精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0)上横坐标为1的点M到抛物线C焦点F的距离|MF|=2.
(1)试求抛物线C的标准方程;
(2)若直线l与抛物线C相交所得的弦的中点为(2,1),试求直线l的方程.
(1)因为抛物线C:y2=2px(p>0)上横坐标为1的点M到抛物线C焦点F的距离|MF|=2,
所以|MF|=xM+
p
2
=1+
p
2
=2
,所以p=2,
所以抛物线C的标准方程为y2=4x;
(2)设直线l与抛物线C相交所得的弦为AB,A(x1,y1),B(x2,y2),
则有
y21
=4x1
y22
=4x2
两式相减并整理得:
y1-y2
x1-x2
=
4
y1+y2

所以kAB=
y1-y2
x1-x2
=
4
y1+y2
=
4
2
=2

由直线的点斜式得:y-1=2(x-2)
所以直线l的方程为:2x-y-3=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的离心率e=
3
2
,短轴长为2,点A(x1,y1),B(x2,y2)是椭圆上的两点,
m
=(
x1
b
y1
a
)
n
=(
x2
b
y2
a
)
,且
m
n
=0

(1)求椭圆方程;
(2)若直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率;
(3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点M(2,0)的直线l与抛物线y2=x交于A,B两点,则
OA
OB
的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:椭圆
x2
a2
+
y2
b2
=1
(a>b>0),过点A(-a,0),B(0,b)的直线倾斜角为
π
6
,原点到该直线的距离为
3
2

(1)求椭圆的方程;
(2)斜率大于零的直线过D(-1,0)与椭圆交于E,F两点,若
ED
=2
DF
,求直线EF的方程;
(3)是否存在实数k,直线y=kx+2交椭圆于P,Q两点,以PQ为直径的圆过点D(-1,0)?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,a+b=3.
(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点A的坐标是(0,-1),且右焦点Q到直线x-y+2
2
=0的距离为3.
(1)求椭圆方程;
(2)试问是否存在斜率为k(k≠0)的直线l,使l与椭圆M有两个不同的交点B、C,且|AB|=|AC|?若存在,求出k的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在x轴上,离心率为
3
2
,长轴长为4
5
,直线l:y=x+m交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)若直线l不经过椭圆上的点M(4,1),求证:直线MA,MB的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
4
+y2=1
,过点M(-1,0)作直线l交椭圆于A,B两点,O是坐标原点.
(1)求AB中点P的轨迹方程;
(2)求△OAB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆E1
x2
a21
+
y2
b21
=1
和椭圆E2
x2
a22
+
y2
b22
=1
满足
a2
a1
=
b2
b1
=m(m>0)
,则称这两个椭圆相似,m是相似比.
(Ⅰ)求过(2,
6
)
且与椭圆
x2
4
+
y2
2
=1
相似的椭圆的方程;
(Ⅱ)设过原点的一条射线l分别与(Ⅰ)中的两椭圆交于A、B两点(点A在线段OB上).
①若P是线段AB上的一点,若|OA|,|OP|,|OB|成等比数列,求P点的轨迹方程;
②求|OA|•|OB|的最大值和最小值.

查看答案和解析>>

同步练习册答案