精英家教网 > 高中数学 > 题目详情
12.命题p:函数y=log2($\sqrt{{x}^{2}+1}-x$)是奇函数,命题q:“对函数f(x),若f′(x0)=0,则x=x0为函数的极值点”.则下列命题中真命题是(  )
A.p∧qB.p∨qC.(¬p)∧qD.(¬p)∧(¬q)

分析 由函数的奇偶性和函数的极值定义可得p真q假,可得答案.

解答 解:函数y=log2($\sqrt{{x}^{2}+1}-x$)的定义域为R,
且满足log2($\sqrt{{x}^{2}+1}$+x)+log2($\sqrt{{x}^{2}+1}-x$)=log21=0,
∴函数y=log2($\sqrt{{x}^{2}+1}-x$)是奇函数,故命题p为真;
对函数f(x),若f′(x0)=0,还需满足x=x0的两侧单调性相反,
才可推出x=x0为函数的极值点,故命题q为假;
结合选项可得:B为真命题.
故选:B.

点评 本题考查复合命题的真假,涉及函数的奇偶性和函数的极值定义,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,若此椭圆上存在不同的两点A,B关于直线y=4x+m对称,则实数m的取值范围是(  )
A.(-$\frac{2\sqrt{13}}{13}$,$\frac{2\sqrt{2}}{13}$)B.(-$\frac{2\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)C.(-$\frac{\sqrt{2}}{13}$,$\frac{2\sqrt{13}}{13}$)D.(-$\frac{2\sqrt{3}}{13}$,$\frac{2\sqrt{3}}{13}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.未来制造业对零件的精度要求越来越高.3D打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有广阔的发展空间.某制造企业向A高校3D打印实验团队租用一台3D打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取10件零件,度量其内径的茎叶图如图所示(单位:μm).
(I)计算平均值μ与标准差σ
(Ⅱ)假设这台3D打印设备打印出品的零件内径Z服从正态分布N(μ,σ);该团队到工厂安装调试后,试打了5个零件.度量其内径分别为(单位:μm):86、95、103、109、118,试问此打印设备是否需要进一步调试,为什么?
参考数据:P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若复数z满足zi=-1-i,则在复平面内,z所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线C:y2=4x上到直线l:y=x距离为$\frac{\sqrt{2}}{2}$的点的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A(0,4),B(-2,0),则线段AB中点C的坐标是(  )
A.(-2,4)B.(-1,2)C.(1,2)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an},{bn}(bn≠0,n∈N*)满足bn+1=$\frac{{a}_{n+1}•{b}_{n}}{{a}_{n}+2{b}_{n}}$,且a1=b1=1.
(1)令cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的通项公式;
(2)若数列{bn}为各项均为正数的等比数列,且b32=9b2b6,求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$\frac{π}{2}$<α<$\frac{3}{2}$π,cosα>sinα,则2α终边所在象限为第Ⅰ象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列函数的定义域:
(1)f(x)=$\frac{\root{4}{(1+3x)^{3}}}{x}$
(2)f(x)=$\sqrt{4-|x-3|}$.

查看答案和解析>>

同步练习册答案