精英家教网 > 高中数学 > 题目详情

【题目】设数列 的前项和为,对一切,点都在函数的图象上.

1)求,归纳数列的通项公式(不必证明);

2)将数列依次按1项、2项、3项、4项循环地分为 ,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;

3)设为数列的前项积,若不等式对一切都成立,其中,求的取值范围.

【答案】1;(22010;(3.

【解析】

1)点坐标代入函数解析式,得,令依次可求得,归纳出通项公式;

2)依题意,每一次循环记为一组.由于每一个循环含有4个括号,故是第25组中第4个括号内各数之和.这样可求得(注意规律),而,因此结论易用得

3)由,得,不等式对一切都成立, 就是对一切都成立,

,则只需即可.用作商的方法说明是递减数列,从而问题易求解.

1)因为点在函数的图象上,故,所以.

,得,所以;令,得,所以,……

由此猜想:.

2)因为,所以数列依次按1项、2项、3项、4项循环地分为(2),(46),(81012),(14161820);(22),(2426),(283032),(34363840);(42),….

每一次循环记为一组.由于每一个循环含有4个括号,故是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.

同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20. 故各组第4个括号中各数之和构成等差数列,且公差为80.

注意到第一组中第4个括号内各数之和是68

所以.,所以.

3)因为,故,所以.

,故对一切都成立,

就是对一切都成立,

,则只需即可.

由于,所以,故是单调递减,

于是,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)2xx∈(01]

(1)a=-1时,求函数yf(x)的值域;

(2)若函数yf(x)x∈(01]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,.

1)求证:

2)若二面角的大小为时,求的中线与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,求的单调区间;

2)若时,恒成立,求实数的取值范围.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,对于都有成立,且,当,且时,都有.则给出下列命题:①;②为函数图象的一条对称轴;③函数上为减函数;④方程上有4个根;其中正确的命题个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为

1)设椭圆的左右焦点分别为,点在椭圆上运动,求的值;

2)设直线和圆相切,和椭圆交于两点,为原点,线段分别和圆交于两点,设的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;

(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于项数为m)的有穷正整数数列,记,即中的最小值,设由组成的数列称为的“新型数列”.

1)若数列20192020201920182017,请写出的“新型数列”的所有项;

2)若数列满足,且其对应的“新型数列”项数,求的所有项的和;

3)若数列的各项互不相等且所有项的和等于所有项的积,求符合条件的及其对应的“新型数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】节能环保日益受到人们的重视,水污染治理也已成为十三五规划的重要议题.某地有三家工厂,分别位于矩形的两个顶点的中点处,,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与等距离的一点处,建造一个污水处理厂,并铺设三条排污管道.设BAO=x(弧度),排污管道的总长度为

1)将表示为的函数;

2)试确定点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到).

查看答案和解析>>

同步练习册答案