精英家教网 > 高中数学 > 题目详情
14.已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动.
(Ⅰ)求线段AB的中点轨迹方程M;
(Ⅱ)求轨迹M上的点到点P(5,4)的最小距离.

分析 (Ⅰ)设线段AB中点M(x,y),A(x1,y1),由题意知x1=2x-4,y1=2y-3,由点A在圆(x+1)2+y2=4上运动,能求出点M的轨迹方程.
(Ⅱ)求出轨迹M的圆心C到P的距离,减去半径,即可得出结论.

解答 解:(Ⅰ)设线段AB中点M(x,y),A(x1,y1),
由题意知:x1=2x-4,y1=2y-3,
∵点A在圆(x+1)2+y2=4上运动,
∴(2x-4+1)2+(2y-3)2=4,
整理,得(x-$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=1.
(Ⅱ)(x-$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=1表示以C($\frac{3}{2}$,$\frac{3}{2}$)为圆心,1为半径的圆,
∵CP=$\sqrt{(5-\frac{3}{2})^{2}+(4-\frac{3}{2})^{2}}$=$\frac{\sqrt{74}}{2}$,
∴轨迹M上的点到点P(5,4)的最小距离为$\frac{\sqrt{74}}{2}$-1.

点评 本题考查线段的中点的轨迹方程的求法,考查代入法的运用,确定坐标之间的关系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设集合A={y|y=sinx},B={y|y=2x},则A∩B=(  )
A.(-1,0)B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.正方体ABCD-A1B1C1D1中:
(1)求二面角C-AD1-D的余弦值;
(2)求BB1与平面ACD1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知t>0,若$\int_0^t(2x-1)dx=12$,则t=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设a为非零实数,偶函数f(x)=x2+a|x-m|+1,x∈R在区间(1,2)上只有一个零点,则实数a的取值范围为-$\frac{5}{2}$<a<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,直线PD⊥平面ABCD,ABCD为正方形,PD=AD,求直线PA与BD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)=\left\{\begin{array}{l}{a}^{x},x≥0\\(3-a)x+\frac{a}{2},x<0\end{array}\right.$为区间(-∞,+∞)上的单调增函数,则实数a的取值范围为(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(1,$\frac{\sqrt{2}}{2}$),离心率e=$\frac{\sqrt{2}}{2}$,F1、F2为椭圆的左、右焦点.
(1)求椭圆C的标准方程;
(2)设圆T的圆心T(0,t)在x轴上方,且圆T经过椭圆C两焦点.点P为椭圆C上的一动点,PQ与圆T相切于点Q.
①当Q(-$\frac{1}{2}$,-$\frac{1}{2}$)时,求直线PQ的方程;
②当PQ取得最大值为$\frac{\sqrt{5}}{2}$时,求圆T方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数$f(x)=\left\{\begin{array}{l}sinx+\frac{3}{2},x≥0\\{x^2}+a,x<0\end{array}\right.$(其中a∈R)的值域为$[\frac{1}{2},+∞)$,则a的取值范围是(  )
A.$[\frac{3}{2},+∞)$B.$[\frac{1}{2},\frac{3}{2}]$C.$[\frac{1}{2},\frac{5}{2}]$D.$[\frac{1}{2},+∞)$

查看答案和解析>>

同步练习册答案