精英家教网 > 高中数学 > 题目详情
8.在△ABC中,若$\frac{cosA}{cosB}=\frac{b}{a}$,则△ABC的形状等腰三角形或直角三角形.

分析 根据正弦定理进行化简即可,

解答 解:∵$\frac{cosA}{cosB}=\frac{b}{a}$,
∴由正弦定理得若$\frac{cosA}{cosB}=\frac{b}{a}$=$\frac{sinB}{sinA}$,
即sinAcosA=sinBcosB,
即$\frac{1}{2}$sin2A=$\frac{1}{2}$sin2B,
则sin2A=sin2B,
则2A=2B或2A+2B=π,
即A=B或A+B=$\frac{π}{2}$,
即A=B或C=$\frac{π}{2}$,
即三角形是等腰三角形或直角三角形,
故答案为:等腰三角形或直角三角形

点评 本题主要考查三角形形状的判断,利用正弦定理结合三角函数的倍角公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设正数数列{an}的前n项和为Sn满足Sn=$\frac{1}{4}$(an+1)2(n∈N*).
(1)求出数列{an}的通项公式.
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,记数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=3sinx+2cosx,(x∈R)的值域是$[-\sqrt{13},\sqrt{13}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,$\overrightarrow m$=($\sqrt{3}$,-1),$\overrightarrow n$=(cosA,sinA).若$\overrightarrow m⊥\overrightarrow n$,且acosB+bcosA=csinC,则角B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}的通项公式是an=$\frac{1}{n(n+1)}$,若前n项和为$\frac{10}{11}$,则n=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且a2+bc=b2+c2
(1)求∠A的大小;
(2)若b=2,a=$\sqrt{3}$,求边c的大小;
(3)若a=$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=4msinx-cos2x(x∈R)
(1)若m=0,求f(x)的单调递增区间.
(2)若f(x)≥-3恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用数学归纳法证明2n+2>n2(n≥3,n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正实数x,y满足$\frac{1}{1+2x}$+$\frac{1}{1+3y}$=$\frac{1}{2}$,则xy的最小值等于$\frac{9}{4}$.

查看答案和解析>>

同步练习册答案