精英家教网 > 高中数学 > 题目详情
动点p(x,y)的轨迹方程为
(x-3)2+y2
-
(x+3)2+y2
=4
,则判断该轨迹的形状后,可将其方程化简为对应标准方程
 
分析:由动点P(x,y)的轨迹方程及两点间的距离公式,得到其轨迹是以(±3,0)为焦距,以4为实轴长的双曲线的左支,进而得到对应标准方程.
解答:解:设A(-3,0),B(3,0)
由于动点P(x,y)的轨迹方程为
(x-3)2+y2
-
(x+3)2+y2
=4

则|PB|-|PA|=4,故点P到定点B(3,0)与到定点A(-3,0)的距离差为4,
则动点P(x,y)的轨迹是以(±3,0)为焦距,以4为实轴长的双曲线的左支,
由于2a=4,c=3,则b2=c2-a2=5,
故P的轨迹的标准方程为:
x2
4
-
y2
5
=1
(x≤-2).
故答案为:
x2
4
-
y2
5
=1
(x≤-2).
点评:本题考查求点的轨迹方程的方法,两点间距离公式的应用,判断动点P(x,y)的轨迹是以(±3,0)为焦距,以4为实轴长的双曲线的左支,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足|
MN
|•|
MP
|+
MN
NP
=0,则动点P(x,y)的轨迹方程为(  )
A、y2=8x
B、y2=-8x
C、y2=4x
D、y2=-4x

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数β=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)若β是关于t的一元二次方程t2-2t+m=0(m∈R)的一个虚根,且|β|=2,求实数m的值;
(2)设复数β满足条件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常数a∈ (
3
2
 , 3)
),当n为奇数时,动点P(x、y)的轨迹为C1.当n为偶数时,动点P(x、y)的轨迹为C2.且两条曲线都经过点D(2,
2
)
,求轨迹C1与C2的方程;
(3)在(2)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于
2
3
3
,求实数x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足|
MN
|•|
MP
|+
MN
NP
=0,求动点P(x,y)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知实数x,y满足方程
(x-3)2+(y-1)2
=
|2x-y+1|
5
,则动点P(x,y)的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)平面内一动点P(x,y)到两定点F1(-1,0),F2(1,0)的距离之积等于2.
(1)求△PF1F2周长的最小值;
(2)求动点P(x,y)的轨迹C方程,用y2=f(x)形式表示.

查看答案和解析>>

同步练习册答案