精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.

(1)求证:AB1∥平面BC1D;
(2)若BC=3,求三棱锥D﹣BC1C的体积.

【答案】
(1)证明:连接B1C,设B1C与BC1相交于O,连接OD,

∵四边形BCC1B1是平行四边形,∴点O为B1C的中点.

∵D为AC的中点,

∴OD为△AB1C的中位线,∴OD∥B1A.

OD平BC1D,AB1平面BC1D,

∴AB1∥平面BC1D.


(2)解:∵三棱柱ABC﹣A1B1C1,∴侧棱CC1∥AA1

又∵AA1⊥底面ABC,∴侧棱CC1⊥面ABC,

故CC1为三棱锥C1﹣BCD的高,A1A=CC1=2,


【解析】(1)连接B1C,交BC1相交于O,连接OD,可证明OD是△AB1C的中位线,再根据线面平行的判定定理即可证明.(2)由已知可得侧棱CC1⊥面ABC,把计算三棱锥D﹣BC1C的体积转化为计算三棱锥C1﹣BCD的体积.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱中,已知侧面 .

(1)求证: 平面

(2)是棱上的一点,若二面角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下命题:
①如果向量 与任何向量不能构成空间向量的一组基底,那么 的关系是不共线;
②O,A,B,C为空间四点,且向量 不构成空间的一个基底,则点O,A,B,C一定共面;
③已知向量 是空间的一个基底,则向量 + 也是空间的一个基底;
④△ABC中,A>B的充要条件是sinA>sinB.
其中正确的命题个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,定点,点为圆上的动点,点在直线上,点在直线上,且满足.

(1)求点的轨迹的方程;

(2)过点作斜率为的直线,与曲线交于两点, 是坐标原点,是否存在这样的直线,使得,若存在,求出直线的斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后随机投掷2枚正方体骰子,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,
(1)求点P(x,y)在直线y=x﹣1上的概率;
(2)求点P(x,y)满足y2<4x的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图程序框图,如果输入的a=4,b=6,那么输出的n=(

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A、B两点,且AB=2 时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< ),其图象相邻两条对称轴之间的距离为 ,且函数f(x+ )是偶函数,下列判断正确的是(
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点( ,0)d对称
C.函数f(x)的图象关于直线x=﹣ 对称
D.函数f(x)在[ ,π]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二面角α﹣AB﹣β是直二面角,P为棱AB上一点,PQ、PR分别在平面α、β内,且∠QPB=∠RPB=45°,则∠QPR为(
A.45°
B.60°
C.120°
D.150°

查看答案和解析>>

同步练习册答案