【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.
(1)求证:AB1∥平面BC1D;
(2)若BC=3,求三棱锥D﹣BC1C的体积.
【答案】
(1)证明:连接B1C,设B1C与BC1相交于O,连接OD,
∵四边形BCC1B1是平行四边形,∴点O为B1C的中点.
∵D为AC的中点,
∴OD为△AB1C的中位线,∴OD∥B1A.
OD平BC1D,AB1平面BC1D,
∴AB1∥平面BC1D.
(2)解:∵三棱柱ABC﹣A1B1C1,∴侧棱CC1∥AA1,
又∵AA1⊥底面ABC,∴侧棱CC1⊥面ABC,
故CC1为三棱锥C1﹣BCD的高,A1A=CC1=2,
∴ .
∴ .
【解析】(1)连接B1C,交BC1相交于O,连接OD,可证明OD是△AB1C的中位线,再根据线面平行的判定定理即可证明.(2)由已知可得侧棱CC1⊥面ABC,把计算三棱锥D﹣BC1C的体积转化为计算三棱锥C1﹣BCD的体积.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.
科目:高中数学 来源: 题型:
【题目】有以下命题:
①如果向量 , 与任何向量不能构成空间向量的一组基底,那么 , 的关系是不共线;
②O,A,B,C为空间四点,且向量 , , 不构成空间的一个基底,则点O,A,B,C一定共面;
③已知向量 , , 是空间的一个基底,则向量 + , ﹣ , 也是空间的一个基底;
④△ABC中,A>B的充要条件是sinA>sinB.
其中正确的命题个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,定点,点为圆上的动点,点在直线上,点在直线上,且满足.
(1)求点的轨迹的方程;
(2)过点作斜率为的直线,与曲线交于两点, 是坐标原点,是否存在这样的直线,使得,若存在,求出直线的斜率的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后随机投掷2枚正方体骰子,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,
(1)求点P(x,y)在直线y=x﹣1上的概率;
(2)求点P(x,y)满足y2<4x的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A、B两点,且AB=2 时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< ),其图象相邻两条对称轴之间的距离为 ,且函数f(x+ )是偶函数,下列判断正确的是( )
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点( ,0)d对称
C.函数f(x)的图象关于直线x=﹣ 对称
D.函数f(x)在[ ,π]上单调递增
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二面角α﹣AB﹣β是直二面角,P为棱AB上一点,PQ、PR分别在平面α、β内,且∠QPB=∠RPB=45°,则∠QPR为( )
A.45°
B.60°
C.120°
D.150°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com