精英家教网 > 高中数学 > 题目详情
19.若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a的值为(  )
A.-2B.2C.-6D.6

分析 根据绝对值函数的单调性的性质进行求解即可.

解答 解:∵f(x)=|2x+a|的单调递增区间[$-\frac{a}{2}$,+∞),
∴由$-\frac{a}{2}$=3得a=-6,
故选:C

点评 本题主要考查函数单调性的应用,根据绝对值函数的单调性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.向量$\overrightarrow{a}$=(x,x+2),$\overrightarrow{b}$=(1,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=2,若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则x=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tan(α-$\frac{π}{6}$)=$\frac{3}{7}$,tan(β+$\frac{π}{6}$)=$\frac{2}{5}$,则tan(α+β)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在(-$\frac{π}{2}$,0)$∪(0,\frac{π}{2})$上的奇函数,其导函数为f′(x),当x$∈(0,\frac{π}{2})$时,f′(x)tanx-$\frac{f(x)}{co{s}^{2}x}$>0,且f($\frac{π}{4}$)=0,则使不等式f(x)$<\sqrt{3}f(\frac{π}{6})$tanx成立的x的取值范围是(  )
A.(-$\frac{π}{2},-\frac{π}{6}$)∪($\frac{π}{6},\frac{π}{2}$)B.(-$\frac{π}{6},0$)∪(0,$\frac{π}{6}$)C.(-$\frac{π}{6},0$)∪($\frac{π}{6},\frac{π}{2}$)D.(-$\frac{π}{2},-\frac{π}{6}$)∪(0,$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线经过A(-2,9),B(6,-15)两点,则直线倾角为π-arctan3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若a,b为不等于1的正数,且a<b,试比较logab、loga$\frac{1}{b}$、logb$\frac{1}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,三个内角A,B,C的对边分别为a,b,c,a=3,b=2$\sqrt{6}$,B=2A.
(1)求cosA;
(2)求C的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C:x2+y2=4和点Q(4,0).
(1)若P为圆C上一动点,求线段PQ中点的轨迹方程;
(2)若过点Q的直线l与圆C相交于A,B两点,且以线段AB为直径的圆经过坐标原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若点P(a,a+1)在直线x+ay-2=0的左侧,则a的取值范围为-1-$\sqrt{3}$<a<-1+$\sqrt{3}$.

查看答案和解析>>

同步练习册答案