精英家教网 > 高中数学 > 题目详情
2.如图在正方体AC1中,直线BC1与平面A1BD所成的角的余弦值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

分析 设正方体的棱长等于1,建立空间直角坐标系,得出D、B、C1、A1各点的坐标,从而得出 $\overrightarrow{B{C}_{1}}$、$\overrightarrow{{A}_{1}D}$、$\overrightarrow{BD}$的坐标,利用垂直向量数量积为零的方法建立方程组解出 $\overrightarrow{n}$=(1,-1,-1)是平面A1BD的一个法向量,利用向量的夹角公式算出cos<$\overrightarrow{B{C}_{1}}$,$\overrightarrow{n}$>的值,即得直线BC1与平面A1BD所成角的正弦值,最后利用同角三角函数关系可得直线BC1与平面A1BD所成角的余弦值.

解答 解:分别以DA、DC、DD1为x、y、z轴建立如图所示空间直角坐标系
设正方体的棱长等于1,可得
D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),
∴$\overrightarrow{B{C}_{1}}$=(-1,0,1),$\overrightarrow{{A}_{1}D}$=(-1,0,-1),$\overrightarrow{BD}$=(-1,-1,0)
设$\overrightarrow{n}$=(x,y,z)是平面A1BD的一个法向量,
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}D}=-x-z=0}\\{\overrightarrow{n}•\overrightarrow{BD}=-x-y=0}\end{array}\right.$,取x=1,得y=z=-1
∴平面A1BD的一个法向量为$\overrightarrow{n}$=(1,-1,-1)
设直线BC1与平面A1BD所成角为θ,则
sinθ=|cos<$\overrightarrow{B{C}_{1}}$,$\overrightarrow{n}$>|=$\frac{\overrightarrow{B{C}_{1}}•\overrightarrow{n}}{|\overrightarrow{B{C}_{1}}||\overrightarrow{n}|}$=$\frac{\sqrt{6}}{3}$
∴cosθ=$\sqrt{1-si{n}^{2}θ}$=$\frac{\sqrt{3}}{3}$,即直线BC1与平面A1BD所成角的余弦值是$\frac{\sqrt{3}}{3}$.
故选:B.

点评 本题给出正方体模型,求直线与平面所成角的余弦值,着重考查了正方体的性质、利用空间向量研究直线与平面所成角等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.“数列{an}既是等差数列又是等比数列”是“数列{an}是常数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中,一定正确的是(  )
A.若$a>b,\frac{1}{a}>\frac{1}{b}$,则a>0,b<0B.若a>b,b≠0,则$\frac{a}{b}>1$
C.若a>b,a+c>b+d,则c>dD.若a>b,c>d,则ac>bd

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线y2=8x的焦点是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的右焦点,则双曲线的右准线方程x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}满足an+1>an,a1=1,且该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)求数列{an},{bn}的通项公式;
(2)令cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在矩形ABCD中,以DA所在直线为x轴,以DA中点O为坐标原点,建立如图所示的平面直角坐标系.已知点B的坐标为(3,2),E、F为AD的两个三等分点,AC和BF交于点G,△BEG的外接圆为⊙H.
(1)求证:EG⊥BF;
(2)求⊙H的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线的方程为3x-4y+2=0.
(1)求过点(-2,2)且与直线l垂直的直线方程;
(2)求直线x-y-1=0与2x+y-2=0的交点,且求这个点到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}+2x}$的值域为(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若|a-c|<h,|b-c|<h,则下列不等式一定成立的是(  )
A.|a-b|<2hB.|a-b|>2hC.|a-b|<hD.|a-b|>h

查看答案和解析>>

同步练习册答案