【题目】已知函数,,其中且.
(1)求函数的定义域;
(2)若函数的最大值是2,求的值;
(3)求使成立的的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+ax在点(t,f(t))处的切线方程为y=3x+1
(1)求a的值;
(2)已知k≤2,当x>1时,f(x)>k(1﹣ )+2x﹣1恒成立,求实数k的取值范围;
(3)对于在(0,1)中的任意一个常数b,是否存在正数x0 , 使得e + x02<1?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:
①BD平分∠CBF;
②FB2=FDFA;
③AECE=BEDE;
④AFBD=ABBF.
所有正确结论的序号是( )
A.①②
B.③④
C.①②③
D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-1:几何证明选讲]
如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.
(1)证明:B,C,G,F四点共圆;
(2)若AB=1,E为DA的中点,求四边形BCGF的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出盒该产品获利润元;未售出的产品,每盒亏损元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示。该同学为这个开学季购进了盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润。
(1)求市场需求量在[100,120]的概率;
(2)根据直方图估计这个开学季内市场需求量的中位数;
(3)将表示为的函数,并根据直方图估计利润不少于元的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,,)的部分图象如图所示,下列说法正确的是( )
A. 的图象关于直线对称
B. 的图象关于点对称
C. 将函数的图象向左平移个单位得到函数的图象
D. 若方程在上有两个不相等的实数根,则实数的取值范围是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com