精英家教网 > 高中数学 > 题目详情

已知四棱锥P-ABCD的底面是边长为2的菱形,且∠ABC=60°,PA=PC=2,PB=PD.
(Ⅰ)若O是AC与BD的交点,求证:PO⊥平面ABCD;
(Ⅱ)若点M是PD的中点,求异面直线AD与CM所成角的余弦值.

证明:(Ⅰ)连接AC与BD交于点O,连OP.
∵PA=PC,PD=PB,且O是AC和BD的中点,
∴PO⊥AC,PO⊥BD
∴PO⊥平面ABCD.
解:(Ⅱ)取PA的中点N,连接MN,则MN∥AD,
则∠NMC就是所求的角,
根据题意得
所以,

分析:(Ⅰ)连接AC与BD交于点O,连OP.根据等腰三角形三线合一的性质可得PO⊥AC,PO⊥BD,再由线面垂直的判定定理即可得到答案.
(II)取PA的中点N,连接MN,由三角形中位线定理可得MN∥AD,则∠NMC就是异面直线AD与CM所成角,解三角形NMC即可得到异面直线AD与CM所成角的余弦值.
点评:本题考查的知识点是异面直线及其所成的角,直线与平面垂直的判定,其中(I)的关键是添加辅助线,利用等腰三角形的性质得到线线垂直,为线面垂直的判定准备条件,(II)的关键是得到∠NMC就是异面直线AD与CM所成角,进而将异面直线的夹角转化为解三角形问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:PO⊥平面ABCD;
(2)求证:PA⊥BD
(3)若二面角D-PA-O的余弦值为
10
5
,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,AB=BC=2CD=2,BD⊥PE.
(1)求证:平面PAE⊥平面ABCD; 
(2)若直线PA与平面ABCD所成角的正切值为
5
2
,PO=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

同步练习册答案