精英家教网 > 高中数学 > 题目详情
10.△ABC中,点M是边BC的中点,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=3,则$\overrightarrow{AM}$•$\overrightarrow{BC}$=$-\frac{7}{2}$.

分析 把$\overrightarrow{AM}、\overrightarrow{BC}$用向量$\overrightarrow{AB}$,$\overrightarrow{AC}$表示,展开后求得答案.

解答 解:如图,
∵|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=3,
∴$\overrightarrow{AM}$•$\overrightarrow{BC}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})•(\overrightarrow{AC}-\overrightarrow{AB})$=$\frac{1}{2}(|\overrightarrow{AC}{|}^{2}-|\overrightarrow{AB}{|}^{2})$
=$\frac{1}{2}({3}^{2}-{4}^{2})=-\frac{7}{2}$.
故答案为:$-\frac{7}{2}$.

点评 本题考查平面向量的数量积运算,考查向量加法、减法的三角形法则,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.一个直三棱柱的三视图如图所示,其中俯视图是一个顶角为120°的等腰三角形,则该直三棱柱外接球的表面积为(  )
A.20πB.$\frac{20\sqrt{5}}{3}$πC.25πD.25$\sqrt{5}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,已知D,E分别为△ABC的边AB,AC的中点,延长CD到M使DM=CD,延长BE至N使BE=EN.求证:M,A,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.正三棱柱ABC一A1B1C1的底面边长为2,D为AB上一点,如图,建立空间直角坐标系.
(1)若$\overrightarrow{{A}_{1}D}$是平面B1DC的法向量,即$\overrightarrow{{A}_{1}D}$⊥平面B1DC,求正三棱柱的侧棱长.
(2)若D为AB的中点,且$\overrightarrow{{A}_{1}D}$⊥$\overrightarrow{{CB}_{1}}$,求正三棱柱的侧棱长.
(3)在(2)情况下,在侧棱CC1上求一点N,使得cos($\overrightarrow{{DB}_{1}}$,$\overrightarrow{AN}$)=$\frac{3}{\sqrt{34}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.证明不等式|arctana-arctanb|≤|a-b|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),经过点($\sqrt{3}$,$\frac{1}{2}$),且离心率为$\frac{\sqrt{3}}{2}$,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知斜率存在的动直线l与椭圆C交于不同的点A、B,且△OAB的面积为1,若P为线段AB的中点,问:在x轴上是否存在两个定点M、N,使得直线PM与直线PN的斜率之积为定值,若存在,求出M、N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=(ab-a-4b-5)x2+$\frac{a+4b}{x}$(a>0,b>0)为奇函数,则f(1)的最小值为(  )
A.12B.20C.16D.32

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北冀州市高二文上月考三数学试卷(解析版) 题型:选择题

设全集,则( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案