精英家教网 > 高中数学 > 题目详情
已知椭圆,是椭圆长轴的一个端点,是椭圆短轴的一个端点,为椭圆的一个焦点.若,则该椭圆的离心率为 (  )
A.B.
C.D.
B

试题分析:因为,所以由射影定理得,所以,因为所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的两个焦点是)和,并且经过点,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F
(1)求椭圆C和抛物线E的标准方程;
(2)过点F作两条斜率都存在且互相垂直的直线l1l2l1交抛物线E于点ABl2交抛物线E于点GH,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且时,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知,图中的一系列圆是圆心分别为AB的两组同心圆,每组同心圆的半径分别是1,2,3,…,n,…. 利用这两组同心圆可以画出以AB为焦点的椭圆或双曲线. 若其中经过点MN的椭圆的离心率分别是,经过点P,Q 的双曲线的离心率分别是,则它们的大小关系是      (用“”连接)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,过点A的直线L与抛物线C2:x2=4y交于B,C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.
(1)求椭圆C1的方程;
(2)是否存在满足|PF1|+|PF2|=|AF1|+|AF2|的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C1:x2+by=b2经过椭圆C2:+=1(a>b>0)的两个焦点.

(1)求椭圆C2的离心率;
(2)设点Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆+=1的两个焦点是F1、F2,点P在该椭圆上,若|PF1|-|PF2|=2,则△PF1F2的面积是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆+=1(a>b>0)的右顶点为A(1,0),过其焦点且垂直长轴的弦长为1,则椭圆方程为       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC的顶点B、C在椭圆+y2=1上,顶点A与椭圆的焦点F1重合,且椭圆的另外一个焦点F2在BC边上,则△ABC的周长是________.

查看答案和解析>>

同步练习册答案