精英家教网 > 高中数学 > 题目详情

【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价

9

9.2

9.4

9.6

9.8

10

销量

100

94

93

90

85

78

预计在今后的销售中,销量与单价仍然服从这种线性相关关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为( )

(附:对于一组数据,…,,其回归直线的斜率的最小二乘估计值为.参考数值:

A. 9.4元 B. 9.5元 C. 9.6 D. 9.7元

【答案】B

【解析】

先分别求出,得出回归方程,再设利润为,依题意列出函数解析式,进而可求出结果.

因为,所以

故回归方程为

设该产品的售价为元,工厂利润为元,利润=销售收入-成本,

所以

当且仅当,即时,取得最大值.

因此,为使工厂获得最大利润,该产品的单价应定为9.5元.

故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆过点,离心率为.

1)求椭圆的方程;

2)直线过椭圆的左焦点,且与椭圆交于两点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.

1)列出甲、乙两种产品满足的关系式,并画出相应的平面区域;

2)在一个生产周期内该企业生产甲、乙两种产品各多少吨时可获得利润最大,最大利润是多少?

(用线性规划求解要画出规范的图形及具体的解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线和圆,给出下列说法:①直线和圆不可能相切;②当时,直线平分圆的面积;③若直线截圆所得的弦长最短,则;④对于任意的实数,有且只有两个的取值,使直线截圆所得的弦长为.其中正确的说法个数是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .

(Ⅰ)求证:∥平面;

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了位学生在第一学期末的数学成绩数据,样本统计结果如下表:

分组

频数

频率

合计

(1)求的值和实验班数学平均分的估计值;

(2)如果用分层抽样的方法从数学成绩小于分的学生中抽取名学生,再从这名学生中选人,求至少有一个学生的数学成绩是在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出名员工从事第三产业,调整后他们平均每人每年创造利润为万元(),剩下的员工平均每人每年创造的利润可以提高

1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则调整员工从事第三产业的人数应在什么范围?

2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥PABCD中,底面ABCD是菱形,∠BAD60°ABPA2PA⊥平面ABCDEPC的中点,FAB的中点.

1)求证:BE∥平面PDF

2)求证:平面PDF⊥平面PAB

3)求BE与平面PAC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】寒冷的冬天,某高中一组学生来到一大棚蔬菜基地,研究种子发芽与温度控制技术的关系,他们分别记录五组平均温度及种子的发芽数,得到如下数据:

平均温度

11

10

13

9

12

发芽数(颗)

25

23

30

16

26

(Ⅰ)若从五组数据中选取两组数据,求这两组数据平均温度相差不超过概率;

(Ⅱ)求关于的线性回归方程

)若由线性回归方程得到的估计数据与实际数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)屮所得的线性回归方程是否可靠?

(注:

查看答案和解析>>

同步练习册答案