精英家教网 > 高中数学 > 题目详情
18.已知定义在R上的偶函数f(x),当x∈(-∞,0]时的解析式为f(x)=x2+2x
(1)求函数f(x)在R上的解析式;
(2)画出函数f(x)的图象并直接写出它的单调区间.

分析 (1)由已知中,x∈(-∞,0]时的解析式为f(x)=x2+2x,我们可由x>0时,-x<0,代入求出f(-x),进而根据y=f(x)是偶函数,得到x>0时,f(x)的解析式;
(2)根据分段函数分段画的原则,结合(1)中函数的解析式,我们易画出函数的图象,结合图象,我们根据从左到右图象上升,函数为增函数,图象下降,函数为减函数的原则,得到函数的单调性.

解答 解:(1)当x>0时,-x<0,f(-x)=(-x)2-2x=x2-2x
又f(x)为偶函数,∴f(-x)=f(x)
∴f(x)=x2-2x
∴$f(x)=\left\{\begin{array}{l}{x^2}-2x,x>0\\{x^2}+2x,x≤0\end{array}\right.$…(6分)
(2)

…(9分)
单调递增区间为:(-1,0),(1,+∞)
单调递减区间为:(0,1),(-∞,-1)…(13分)

点评 本题考查的知识点是偶函数,函数解析式的求解,函数图象的作法,图象法判断函数的单调性,其中根据偶函数的性质,求出函数的解析式是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数y=f(x-1)是奇函数,且f(2)=1,则f(-4)=(  )
A.1B.3C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=log2x-$\frac{1}{2}$x+5的零点个数为(  )
A.0B.1C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=lgx2,那么,f(-10)=(  )
A.-1B.-2C.2D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列说法:
①集合A={x∈Z|x=2k-1,k∈Z}与集合B={x∈Z|x=2k+1,k∈Z}是相等集合;
②若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
③定义在R上的函数f(x)对任意两个不等实数a、b,总有$\frac{f(a)-f(b)}{a-b}$>0成立,则f(x)在R上是增函数;
④存在实数m,使f(x)=x2+mx+1为奇函数.
正确的有①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.图中阴影部分所表示的集合是(  )
A.(A∪B)∪(B∪C)B.[∁U(A∩C)]∪BC.(A∪C)∩(∁UB)D.B∩[∁U(A∪C)]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x3+ax+b=0,其中a,b均为实数,给出下列条件中,①a=-3,b=-3;②a=-3,b=2;③a=0,b=2.其中能使得该三次方程仅有一个实根的是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+1|+ax(x∈R).
(1)证明:当a>1时,f(x)在R上是增函数;
(2)若函数f(x)存在两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=lnx-$\frac{m}{x}$(m∈R)在区间[1,e]上取得最小值4,则m=(  )
A.-3eB.-1C.-e3D.e2

查看答案和解析>>

同步练习册答案