精英家教网 > 高中数学 > 题目详情
9.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B出发沿北偏东α的方向追赶渔船乙,刚好用两小时追赶上.
(1)求渔船甲的速度;
(2)求sinC的值.

分析 (1)由题意推出∠BAC=120°,利用余弦定理求出BC=28,然后推出渔船甲的速度;
(2)在△ABC中,直接利用正弦定理求出sinC.

解答 解:(1)依题意,∠BAC=120°,AB=12海里,AC=20海里.
在ABC中,由余弦定理得,得BC2=AB2+AC2-2AB×AC×cos∠BAC.
=122+202-2×12×20×cos120°=784.
解得BC=28海里,所以渔船甲的速度是=14(海里/小时)
(2)在三角形ABC中,因为AB=12海里,∠BAC=120°,BC=28海里,
由正弦定理,得sinC=$\frac{ABsin120°}{BC}$=$\frac{3\sqrt{3}}{14}$.

点评 本题是中档题,考查三角函数在实际问题中的应用,正弦定理、余弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知f(x)=x+xlnx,若k(x-2)<f(x)对任意x>2恒成立,则整数k的最大值是(  )
A.8B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥S-ABCD中,已知SD⊥底面ABCD,且四边形ABCD为直角梯形,∠DAB=∠ADC=$\frac{π}{2}$,SD=DC=2,AD=AB=1,E为棱SB上的一点,且DE⊥SC.
(Ⅰ)求$\frac{SE}{EB}$的值;
(Ⅱ)求直线EC与平面ADE所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若A、B、C、D四人站成一排照相,A、B相邻的排法总数为k,则二项式${({1-\frac{x}{k}})^k}$的展开式中含x2项的系数为$\frac{11}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若数f(x)=lnx+x2+ax(a∈R)
(1)若函数f(x)的图象在点P(1,f(1))处的切线与直线x+2y-1=0垂直,求实数a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是30m,则河流的宽度BC等于$60(\sqrt{3}-1)$m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=lnx+$\frac{a}{ex}$
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a=2,证明:对任意的实数x>0,都有f(x)>e-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设两个独立事件A和B都不发生的概率为$\frac{1}{9}$,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow a=({-2,2})$,$\overrightarrow b=({5,m})$,且|$\overrightarrow a+\overrightarrow b|$不超过5,则函数f(x)=$\sqrt{3}$cosx-sinx+m有零点的概率是(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案