精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系内,已知 是圆 上一点,折叠该圆两次使点 分别与圆上不相同的两点(异于点 )重合,两次的折痕方程分别为 ,若圆 上存在点 ,使 ,其中 的坐标分别为 ,则实数 的取值集合为

【答案】
【解析】由题意,∴A(3,2)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,
∴圆上不相同的两点为B(1,4),D(5,4),
∵A(3,2),BA⊥DA
∴BD的中点为圆心C(3,4),半径为1,
∴⊙C的方程为(x﹣3)2+(y﹣4)2=4.
过P,M,N的圆的方程为x2+y2=m2
∴两圆外切时,m的最大值为 ,两圆内切时,m的最小值为
故答案为[3,7].
根据已知条件求出圆心C的坐标和半径,然后求出圆的方程,可知过点P、M、N的圆的方程,两圆外切时,m取得最大值,两圆内切时,m取得最小值,进而求出m的取值集合。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求适合下列条件的椭圆的标准方程:
(1)长轴长是短轴长的 倍,且过点
(2)椭圆过点 ,离心率 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
①当切线在两坐标轴上的截距为零时,设切线方程为y=kx,
,解得k=2±
从而切线方程为y=(2± )x.
②当切线在两坐标轴上的截距不为零时,设切线方程为x+y-a=0,则 ,解得a=-1或3,
从而切线方程为x+y+1=0或x+y-3=0.
综上,切线方程为(2+ )x-y=0或(2- )x-y=0或x+y+1=0或x+y-3=0
(2)点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x )﹣2sin(x )cos(x
(1)求函数f(x)的最小正周期; (Ⅱ)求函数f(x)在区间[﹣ ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的单调区间和极值;
(2)若函数y=g(x)对任意x满足g(x)=f(4﹣x),求证:当x>2,f(x)>g(x);
(3)若x1≠x2 , 且f(x1)=f(x2),求证:x1+x2>4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,一个圆锥形的空杯子上放着一个直径为8cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是两条不同的直线, 是三个不同的平面,给出下列四个命题:
①若 ,则 ②若 ,则
③若 ,则 ④若 ,则
其中正确命题的序号是( )
A.①和②
B.②和③
C.③和④
D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则y=f(x)的图象大致为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案