精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,C> ,若函数y=f(x)在[0,1]上为单调递减函数,则下列命题正确的是(
A.f(cosA)>f(cosB)
B.f(sinA)>f(sinB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)

【答案】C
【解析】解:∵在△ABC中,C> , ∴0<A+B< ,即A与B都为锐角,且A< ﹣B,
则有sinA<sin( ﹣B)=cosB,cosA>cos( ﹣B)=sinB,
∵函数y=f(x)在[0,1]上为单调递减函数,
∴f(sinA)>f(cosB),f(cosA)<f(sinB),
故选:C.
【考点精析】本题主要考查了函数单调性的性质的相关知识点,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x的图象向左平移 个单位后得到函数g(x)的图象,若使|f(x1)﹣g(x2)|=2成立x1 , x2的满足 ,则φ的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的连续函数f(x)满足f(1)=2,且f(x)在R上的导函数f′(x)<1,则不等式f(x)<x+1的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为菱形,E为棱PB的中点,O为AC与BD的交点,
(Ⅰ)证明:PD∥平面EAC
(Ⅱ)证明:平面EAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sin2x的图象经过适当变换可以得到y=cos2x的图象,则这种变换可以是(
A.沿x轴向右平移 个单位
B.沿x轴向左平移 个单位
C.沿x轴向左平移 个单位
D.沿x轴向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正三棱柱ABC﹣A1B1C1中,点D在边BC上,AD⊥C1D.
(1)求证:平面ADC1⊥平面BCC1B1
(2)如果点E是B1C1的中点,求证:AE∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3(n∈N)
(I)求数列{an}的通项公式;
(Ⅱ)令bn=(2n﹣1)an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(1,2), =(﹣3,2), 当k=时,(1)k + ﹣3 垂直;
当k=时,(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应的程序,则输出的结果为(
A.2
B.1
C.0
D.﹣1

查看答案和解析>>

同步练习册答案