精英家教网 > 高中数学 > 题目详情

【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.

(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?

(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.

【答案】(1)当时,有3个坑要补播种的概率最大,最大概率为; (2)见解析.

【解析】

1)将有3个坑需要补种表示成n的函数,考查函数随n的变化情况,即可得到n为何值时有3个坑要补播种的概率最大.(2n4时,X的所有可能的取值为01234.分别计算出每个变量对应的概率,列出分布列,求期望即可.

(1)对一个坑而言,要补播种的概率

有3个坑要补播种的概率为.

欲使最大,只需

解得,因为,所以

时,

时,

所以当时,有3个坑要补播种的概率最大,最大概率为.

(2)由已知,的可能取值为0,1,2,3,4.

所以的分布列为

0

1

2

3

4

的数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的左,右焦应分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1.

1)求椭圆的方程;

2)已知直线与椭圆切于点,直线平行于,与椭圆交于不同的两点,且与直线交于点.证明:存在常数,使得,并求的值;

3)点是椭圆上除长轴端点外的任一点,连接,设后的角平分线的长轴于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD是直角梯形,侧棱底面ABCDAB垂直于ADBC,且.M是棱SB的中点.

(Ⅰ)求证:SCD

(Ⅱ)求二面角的余弦值;

(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,,且的最小值为,的图像的相邻两条对称轴之间的距离为.

1)求函数的解析式和单调递增区间;

2)在中,角,,所对的边分别为,,.,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推进农村经济结构调整,某乡村举办水果观光采摘节,并推出配套乡村游项目.现统计了4月份100名游客购买水果的情况,得到如图所示的频率分布直方图.

1)若将购买金额不低于80元的游客称为优质客户”,现用分层抽样的方法从样本的优质客户中抽取5人,求这5人中购买金额不低于100元的人数;

2)从(1)中的5人中随机抽取2人作为幸运客户免费参加乡村游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)设图象在点处的切线与的图象相切,求的值;

3)若函数存在两个极值点,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集I=123456},集合AB都是I的子集,若AB=135},则称AB理想配集,记作(AB),问这样的理想配集AB)共有( )

A. 7B. 8C. 27D. 28

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,边所在直线的方程分别为.

1)求边上的高所在的直线方程;

2)若圆过直线上一点及点,当圆面积最小时,求其标准方程.

查看答案和解析>>

同步练习册答案