精英家教网 > 高中数学 > 题目详情
(2012•卢湾区一模)若函数f(x)同时满足下列三个条件:①有反函数 ②是奇函数 ③其定义域与值域相同,则函数f(x)可以是(  )
分析:先依据奇函数排除一选项,再根据定义域与值域是否相同,又排除一些选项,最后根据是否有反函数,即可得出答案.
解答:解:由于f(x)=
ex+e-x
2
是偶函数,
即B不是奇函数,
又A:f(x)=sinx(-
π
2
≤x≤
π
2
)的定义域为-
π
2
≤x≤
π
2
,值域为[-1,1],
D:f(x)=ln
1+x
1-x
的定义域为(-1,1),值域不是(-1,1),
故选项A、D定义域与值域不同,
对于C:同时满足下列三个条件:①有反函数 ②是奇函数 ③其定义域与值域相同,
故只有C正确.
故选C.
点评:本题主要考查了函数奇偶性的判断.设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.灵活利用题目的条件解好数学问题是一种能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•卢湾区一模)不等式x2+x+1<0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)函数y=
12
lnx
(x>0)的反函数为
y=e2x(x∈R)
y=e2x(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)若集合A={x|0≤x≤5,x∈Z},B={x|x=
k2
,k∈A
},则A∩B=
{0,1,2}
{0,1,2}
(用列举法表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)已知二元一次方程组
a1x+b1y=c1
a2x+b2y=c2
,若记
a
=
a1 
a2 
b
=( 
b1 
b2 
c
=
c1 
c2 
,则该方程组存在唯一解的条件为
a
b
不平行
a
b
不平行
(用
a
b
c
表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)若(1+ax)5=1+10x+bx2+…+a5x5,则b=
40
40

查看答案和解析>>

同步练习册答案