精英家教网 > 高中数学 > 题目详情

若函数f(x)=loga(x2-ax+3)(a>0且a≠1),满足对任意的x1、x2,当x1<x2数学公式时,f(x1)-f(x2)>0则实数a的取值范围为 ________


分析:f(x1)-f(x2)>0转化为f(x1)>f(x2),再利用复合函数的单调性:知道 a>1且真数恒大于0,求得a的取值范围.
解答:∵y=x2-ax+3=(x-2+3-在对称轴左边递减,
∴当x1<x2时,y1>y2
∵对任意的x1、x2,当x1<x2时,f(x1)-f(x2)>0?f(x1)>f(x2
故应有 a>1 ①
又因为y=x2-ax+3在真数位置上所以须有3->0?-2<a<2
综上得 1<a<2
故答案为:(1,2).
点评:本题考查了复合函数的单调性.复合函数的单调性的遵循原则是单调性相同复合函数为增函数,单调性相反复合函数为减函数.
练习册系列答案
相关习题

科目:高中数学 来源:陕西省汉中地区2007-2008学年度高三数学第一学期期中考试试卷(理科) 题型:022

若函数f(x)=的定义域为M,g(x)=lo(2+x=6x2)的单调递减区间是开区间N,设全集U=R,则M∩CU(N)=________.

查看答案和解析>>

科目:高中数学 来源:汨罗市第三中学2008届高三第二次月考2、数学 题型:044

函数f(x)=lo(x2-2ax+3).

(1)若f(x)的定义域为R,值域为(-∞,-1],试求实数a的值;

(2)若f(x)在(-∞,1]内是增函数,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:苏教版江苏省扬州市2007-2008学年度五校联考高三数学试题 题型:044

已知函数(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是单调减函数,求实数m的取值范围;

(2)设g(x)=f(x)+lnx,当m≥-2时,求g(x)在上的最大值.

查看答案和解析>>

科目:高中数学 来源:山东省莒南一中2008-2009学年度高三第一学期学业水平阶段性测评数学文 题型:044

设f(x)=lo的奇函数,a为常数,

(Ⅰ)求a的值;

(Ⅱ)证明:f(x)在(1,+∞)内单调递增;

(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>()x+m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案