精英家教网 > 高中数学 > 题目详情
设函数f(x)=
a3
x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1和4,若f(x)在 (-∞,+∞)内无极值点,则实数a的取值范围是
 
分析:由方程f′(x)-9x=0的两个根分别为1和4,得到
b=
1
2
(9-5a)
c=4a
,又由函数f(x)=
a
3
x3+bx2+cx+d(a>0)在R上无极值,则其导数值非正或非负,
由于其导数为开口向上的二次函数,只须导函数相应二次方程的判别式非正即可即可得到函数在R上无极值的条件,将b,c代入后,求解不等式,即可得到实数a的取值范围.
解答:解:∵f(x)=
a
3
x3+bx2+cx+d(a>0)
∴f′(x)=ax2+2bx+c,
∵方程f′(x)-9x=0的两个根分别为1和4,
∴ax2+(2b-9)x+c=0的两个根分别为1和4,
a+2b+c-9=0
16a+8b+c-36=0

b=
1
2
(9-5a)
c=4a

又∵函数f(x)=
a
3
x3+bx2+cx+d(a>0)在R上无极值
∴f′(x)=ax2+2bx+c≥0恒成立
∴4b2-4ac≤0,即b2-ac≤0
[
1
2
(9-5a)]2-4a2≤0
,整理得a2-10a+9≤0
解得:1≤a≤9,
则实数a的取值范围1≤a≤9.
故答案为:1≤a≤9.
点评:本题的考点是函数在某点取得极值的条件,考查函数没有极值时导数的值域的数字特征,并将这一关系转化为相应的不等式.本题在求解时用到了等价转化的思想.转化是数学中解决问题的常用技巧,做完此题后要好好体会其方式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=(2-a)lnx+
1
x
+2ax.
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a≠0时,求f(x)的单调区间;
(Ⅲ)当a=2时,对任意的正整数n,在区间[
1
2
,6+n+
1
n
]上总有m+4个数使得f(a1)+f(a2)+f(a3)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试问:正整数m是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数f(x)=[x[x]],其中[x]表示不超过x的最大整数,如:[1,5]=1.[-1,3]=-2,当x∈[0,n](n∈N*)时,设函数f(x)的值域为A,记集合A中的元素个数为a,则:
(1)a3=
6
6

(2)式子
an+90
n
的最小值为
181
13
181
13

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x-sinx,数列{an}满足an+1=f(an).
(1)若a1=2,试比较a2与a3的大小;
(2)若0<a1<1,求证:0<an<1对任意n∈N*恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
4+
1
x2
,数列{an}满足:点P(an
1
an+1
)
在曲线y=f(x)上,其中n∈N*,且a1=1,an>0.
(I)求a2和a3
(II)求数列{an}的通项公式;
(III)若bn=
1
an2
+2n
,n∈N*,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

任给实数a,b定义a?b=
a×b,a×b≥0
a
b
,a×b<0
  设函数f(x)=lnx?x,若{an}是公比大于0的等比数列,且a5=1,则f(a1)+f(a2)+f(a3)+…+f(a7)+f(a8)+f(a)=a1,则a1=(  )
A、e2B、e
C、2D、1

查看答案和解析>>

同步练习册答案