精英家教网 > 高中数学 > 题目详情
13.解不等式:$\frac{2x-4}{{x}^{2}+x+1}$<3.

分析 易得x2+x+1>0,不等式可化为2x-4<3(x2+x+1),解一元二次不等式可得.

解答 解:配方可得x2+x+1=(x+$\frac{1}{2}$)2+$\frac{3}{4}$>0,
∴原不等式可化为2x-4<3(x2+x+1),
整理可得3x2+x+7>0,
由△=1-4×3×7<0可得不等式的解集为R.

点评 本题考查分式不等式的解集,化为整式不等式是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数f(x)=x2+x+$\frac{1}{2}$,x∈(n,n+1)(n是整数)的值域中恰有10个不同整数,则n的值为-6或4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设f(x)是R上的函数,满足|f(x)+cos2x|≤$\frac{3}{4}$,|f(x)-sin2x|≤$\frac{1}{4}$,则f(x)=$\frac{3}{4}$-cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=2x+1,g(x)=2x-1,则不等式f[g(x)]>g[f(x)]的解集是(  )
A.{x|x<2}B.{x|0<x<2}C.{x|x>2}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中正确的是(  )
A.命题“?x0∈[-3,3],x02+2x0+1≤0”的否定是“?x∈(-∞,-3)∪(3,+∞),x2+2x+1>0”
B.命题“p∧q为真”是命题“p∨q为真”的必要不充分条件
C.已知a、b、c是实数,则“ac2>bc2”是“a>b”的充分条件
D.若m>0,则方程x2+x-m=0有实数根的否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3-3ax+1有3个零点,则a的取值范围为(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{2}}{2}$,+∞)C.(0,$\frac{\sqrt{2}}{2}$)D.($\frac{\root{3}{2}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=2sin(3x-$\frac{π}{4}$)的最小正周期是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的方程x2+(m-3)x+m=0.
(1)若方程的一根大于2,一根小于2,求实数m的取值范围;
(2)若方程的两根都小于-2,求实数m的取值范围;
(3)若方程的一根在区间(-2,0)内,一根在区间(0,4)内,求实数m的取值范围;
(4)若方程的两根都在区间(0,2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知映射f:A→B,其中A=B=R,对应关系是f:x→y=x2-2x+2,若对实数k∈B,在集合A中没有原像与之对应,则k的取值范围是(  )
A.(-∞,1]B.(-∞,1)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

同步练习册答案