已知函数f(x)=ax2-ln x,x∈(0,e],其中e是自然对数的底数,a∈R.
(1)当a=1时,求函数f(x)的单调区间与极值;
(2)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.
(1)f(x)的单调增区间是,单调减区间为,极小值为+ln 2.无极大值(2)a=
【解析】(1)∵f(x)=x2-ln x,f′(x)=2x-=,x∈(0,e],
令f′(x)>0,得<x<e,
f′(x)<0,得0<x<,
∴f(x)的单调增区间是,单调减区间为.
∴f(x)的极小值为f =-ln =+ln 2.无极大值.
(2)假设存在实数a,使f(x)=ax2-ln x,x∈(0,e]有最小值3,
f′(x)=2ax-=.
①当a≤0时,x∈(0,e],所以f′(x)<0,所以f(x)在(0,e]上单调递减,
∴f(x)min=f(e)=ae2-1=3,a= (舍去).
②当a>0时,令f′(x)=0,得x= ,
(ⅰ)当0< <e,即a>时,
f(x)在上单调递减,在上单调递增,
∴f(x)min=f=-ln=3,得a=.
(ⅱ)当≥e,即0<a≤时,x∈(0,e]时,f′(x)<0,
所以f(x)在(0,e]上单调递减,
∴f(x)min=f(e)=ae2-1=3,a=(舍去),此时f(x)无最小值.
综上,存在实数a=,使得当x∈(0,e]时,f(x)有最小值3.
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷5练习卷(解析版) 题型:选择题
已知椭圆E:=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为( )
A. =1 B.=1 C.=1 D.=1
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷3练习卷(解析版) 题型:选择题
执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( )
A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷2练习卷(解析版) 题型:填空题
已知向量a与b的夹角是,且|a|=1,|b|=4,若(2a+λb)⊥a,则实数λ=________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷2练习卷(解析版) 题型:选择题
已知向量a、b的夹角为45°,且|a|=1,|2a-b|=,则|b|=( )
A.3 B.2 C. D.1
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷1练习卷(解析版) 题型:解答题
设定义在(0,+∞)上的函数f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷1练习卷(解析版) 题型:选择题
已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=ex(1-x);②函数f(x)有两个零点;③f(x)>0的解集为(-1,0)∪(1,+∞);④?x1,x2∈R,都有|f(x1)-f(x2)|<2.
其中正确命题的个数是( )
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练C组练习卷(解析版) 题型:解答题
已知椭圆C:=1(a>b>0)上任一点P到两个焦点的距离的和为2,P与椭圆长轴两顶点连线的斜率之积为-.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1,y1),B(x2,y2).
(1)若= (O为坐标原点),求|y1-y2|的值;
(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QA,QB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练填空题押题练E组练习卷(解析版) 题型:填空题
若以连续抛掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com