精英家教网 > 高中数学 > 题目详情

【题目】(1)求经过点P(41),且在两坐标轴上的截距相等的直线方程.

(2)设直线yx2a与圆Cx2y22ay20相交于AB两点,若|AB|2,求圆C的面积.

【答案】1x4y0xy50.(2

【解析】

1)设直线lxy轴上的截距均为a,分a0a≠0两种情况分别求出直线l的方程.

2)由圆的方程得到圆心坐标和半径r,由垂径定理得到圆心到直线的距离,解出a值,则面积可求

(1)设直线lxy轴上的截距均为a,若a0,即l过点(00)(41)

l的方程为yx,即x4y0

a≠0,则设l的方程为,∵l过点(41),∴1

a5,∴l的方程为xy50

综上可知,直线l的方程为x4y0xy50

(2)Cx2y22ay20,即Cx2(ya)2a22,圆心为C(0a),半径r

C到直线yx2a的距离为d

又由|AB|2,得a22,解得a22,所以圆的面积为π(a22)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”.已知椭圆,点是椭圆上的任意一点,直线过点且是椭圆的“切线”.

(1)证明:过椭圆上的点的“切线”方程是

(2)设是椭圆长轴上的两个端点,点不在坐标轴上,直线分别交轴于点,过的椭圆的“切线”轴于点,证明:点是线段的中点;

(3)点不在轴上,记椭圆的两个焦点分别为,判断过的椭圆的“切线”与直线所成夹角是否相等?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)求的单调区间;

(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=fx)是定义域为R的偶函数.当x≥0时,,若关于x的方程[fx]2+afx+b=0abR有且仅有6个不同实数根,则实数a的取值范围是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )

A. 命题的否定是:

B. 命题中,若,则的否命题是真命题

C. 如果为真命题,为假命题,则为真命题,为假命题

D. 是函数的最小正周期为的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为.

(Ⅰ)求曲线的直角坐标方程与直线的参数方程;

(Ⅱ)设直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点与双曲线的焦点重合,过椭圆的右顶点任意作直线,交抛物线两点,且,其中为坐标原点.

(1)试求椭圆的方程;

(2)过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于点,试求四边形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数且不恒为零,对满足,且上单调递增.

1)求的值,并判断函数的奇偶性;

2)求的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,坐标原点为.椭圆的动弦过右焦点且不垂直于坐标轴,的中点为,过且垂直于线段的直线交射线于点.

(I)求点的横坐标;

(II)当最大时,求的面积.

查看答案和解析>>

同步练习册答案