精英家教网 > 高中数学 > 题目详情
设数列{an}的首项a1=a(a∈R),且an+1=
an-3
-an+4
an>3时
an≤3时
n=1,2,3,….
(I)若0<a<1,求a2,a3,a4,a5
(II)若0<an<4,证明:0<an+1<4;
(III)若0<a≤2,求所有的正整数k,使得对于任意n∈N*,均有an+k=an成立.
分析:(I)由a1=a且0<a<1代入得到a2;a2∈(3,4),代入(2)得到a3;a3∈(0,1),代入(1)得a4;a4∈(3,4),代入(2)得到a4;a5∈(0,1),代入(1)所以求得a5
(II)分两种情况①当0<an≤3时和②当3<an<4得到0<an+1<4得证;
(III)分三种情况若0<a<1;1≤a<2;若a=2,由特殊值得到k的特值,写出k的一般的取值即可.
解答:解:(Ⅰ)因为a1=a∈(0,1)得a2∈(3,4),所以a2=-a1+4=-a+4;
a3∈(0,1)所以a3=a2-3=-a+1;
a4∈(3,4)所以a4=-a3+4=a+3,
a5∈(0,1)所以a5=a4-3=a
(Ⅱ)证明:①当0<an≤3时,an+1=-an+4,所以1≤an+1<4.
②当3<an<4,an+1=an-3,所以0<an+1<1.
综上,0<an<4时,0<an+1<4
(Ⅲ)解:①若0<a<1,由(I)知a5=a1,所以k=4
因此,当k=4m(m∈N*)时,对所有的n∈N*,an+k=an成立
②若1≤a<2,则a2=-a+4,且a2∈(2,3]a3=-a2+4=-(-a+4)+4=a=a1,所以k=2
因此,当k=2m(m∈N*)时,对所有的n∈N*,an+k=an成立
③若a=2,则a2=a3=a4=2,所以k=1,
因此k=m(m∈N*)时,对所有的n∈N*,an+k=an成立
综上,若0<a<1,则k=4m;1≤a<2,则k=2m;若a=2,则k=m.m∈N*
点评:考查学生会利用数列的递推式解决数学问题,会进行不等式的证明,掌握利用分类讨论的数学思想解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
3
2
,前n项和为Sn,且满足2an+1+Sn=3( n∈N*).
(Ⅰ)求a2及an
(Ⅱ)求满足
18
17
S2n
Sn
8
7
的所有n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=a≠
1
4
,且an+1=
1
2
an
(n为偶数)
an+
1
4
(n为奇数)
,n∈N*,记bn=a2n-1-
1
4
cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3
(2)判断数列{bn}是否为等比数列,并证明你的结论;
(3)当a>
1
4
时,数列{cn}前n项和为Sn,求Sn最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
1
2
,且an+1=
2an
1+an
(n∈N*).
(1)求a2,a3,a4
(2)根据上述结果猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区二模)设数列{an}的首项a1=-
1
2
,前n项和为Sn,且对任意n,m∈N*都有
Sn
Sm
=
n(3n-5)
m(3m-5)
,数列{an}中的部分项{abk}(k∈N*)成等比数列,且b1=2,b2=4.
(Ⅰ)求数列{an}与{bn}与的通项公式;
(Ⅱ)令f(n)=
1
bn+1
,并用x代替n得函数f(x),设f(x)的定义域为R,记cn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)(n∈N*)
,求
n
i=1
1
cici+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
5
4
,且an+1=
1
2
a
n
,n为偶数
an+
1
4
,n为奇数
,记bn=a2n-1-
1
4
,n=1,2,3,…
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若设数列{cn}的前n项和为Sn,cn=nbn,求Sn

查看答案和解析>>

同步练习册答案