精英家教网 > 高中数学 > 题目详情

【题目】中国改革开放以来经济发展迅猛,某一线城市的城镇居民20122018年人均可支配月收入散点图如下(年份均用末位数字减1表示).

1)由散点图可知,人均可支配月收入y(万元)与年份x之间具有较强的线性相关关系,试求y关于x的回归方程(系数精确到0.001),依此相关关系预测2019年该城市人均可支配月收入;

2)在20142018年的五个年份中随机抽取两个数据作样本分析,求所取的两个数据中,人均可支配月收入恰好有一个超过1万元的概率.

注:

【答案】12019年该城市人均可支配月收入为1.236万元;(2

【解析】

1)求出平均数,结合已经给定的数据根据公式分别求解,得到回归方程,当时,,即可得到预测值;

2)根据已知数据利用古典概型求解概率.

1

所以y关于x的回归方程为.

时,,所以2019年该城市人均可支配月收入为1.236万元.

2)设20142015年记为201620172018年记为,则所有取法有,共有10

恰好有一个月收入超过1万的事件有,共有6种,

所以在20142018年中随机抽取两个,人均可支配月收入恰好有一个超过1万元的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,已知:a52a2+3a2a14成等比数列.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设正项数列{bn}满足bn2Sn+1Sn+1+2,求证:b1+b2++bnn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形,

1)证明:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医院体检中心为回馈大众,推出优惠活动:对首次参加体检的人员,按200元/次收费,并注册成为会员,对会员的后续体检给予相应优惠(本次即第一次),标准如下:

体检次序

第一次

第二次

第三次

第四次

第五次及以上

收费比例

1

0.95

0.90

0.85

0.8

该体检中心从所有会员中随机选取了100位对他们在本中心参加体检的次数进行统计,得到数据如下表:

体检次数

一次

两次

三次

四次

五次及以上

频数

60

20

12

4

4

假设该体检中心为顾客体检一次的成本费用为150元,根据所给数据,解答下列问题:

1)已知某顾客在此体检中心参加了3次体检,求这3次体检,该体检中心的平均利润;

2)该体检中心要从这100人里至少体检3次的会员中,按体检次数用分层抽样的方法抽出5人,再从这5人中抽取2人发放纪念品,求抽到的2人中恰有1人体检3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的特殊状况;如图所示,已知三个发射台分别为且刚好三点共线,已知海里,海里,现以的中点为原点,所在直线为轴建系.现根据船接收到点与点发出的电磁波的时间差计算出距离差,得知船在双曲线的左支上,若船上接到台发射的电磁波比台电磁波早(已知电磁波在空气中的传播速度约为1海里),则点的坐标(单位:海里)为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,且经过点.

1)求椭圆的方程;

2)直线的斜率为,且与椭圆相交于两点(异于点),过的角平分线交椭圆于另一点.证明:直线与坐标轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂预购软件服务,有如下两种方案:

方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;

方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.

(1)设日收费为元,每天软件服务的次数为,试写出两种方案中的函数关系式;

(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,以椭圆的上顶点为圆心作圆,

,圆与椭圆在第一象限交于点,在第二象限交于点.

(1)求椭圆的方程;

(2)求的最小值,并求出此时圆的方程;

(3)设点是椭圆上异于的一点,且直线分别与轴交于点为坐标原点,求证:

为定值.

查看答案和解析>>

同步练习册答案