精英家教网 > 高中数学 > 题目详情
某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:(  )
A、
1
10
B、
1
20
C、
1
40
D、
1
120
分析:由题意知本题是一个古典概型,试验发生包含的所有事件是10位同学参赛演讲的顺序共有A1010;满足条件的事件要得到需要分为三步,根据分步计数原理得到结果,再根据古典概型公式得到结果.
解答:解:由题意知本题是一个古典概型,
∵试验发生包含的所有事件是10位同学参赛演讲的顺序共有:A1010
满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:
①将一班的3位同学“捆绑”在一起,有A33种方法;
②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有A66种方法;
③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有A72种方法.
根据分步计数原理(乘法原理),共有A33•A66•A72种方法.
∴一班有3位同学恰好被排在一起(指演讲序号相连),
而二班的2位同学没有被排在一起的概率为:P=
A
3
3
A
6
6
A
2
7
A
10
10
=
1
20

故选B.
点评:本题考查的是排列问题,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其他班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为(  )

A.                                         B.

C.                                        D.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为           (  )

     A.           B.            C.                D.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为    (  )

     A.           B.            C.                D.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为    (  )

     A.           B.            C.                D.

查看答案和解析>>

同步练习册答案