精英家教网 > 高中数学 > 题目详情
5.已知实数x、y满足2x2+4xy+2y2+x2y2≤9,求u=2$\sqrt{2}$(x+y)+xy的最大值与最小值.

分析 化简可得2(x+y)2+x2y2≤9,从而令x+y=w,xy=v,从而得到2w2+v2≤9,u=2$\sqrt{2}$w+v,w=-$\frac{v}{2\sqrt{2}}$+$\frac{u}{2\sqrt{2}}$,从而利用数形结合的思想求解即可.

解答 解:∵2x2+4xy+2y2+x2y2≤9,
∴2(x+y)2+x2y2≤9,
令x+y=w,xy=v,
则2w2+v2≤9,
即$\frac{{w}^{2}}{4.5}$+$\frac{{v}^{2}}{9}$≤1,
u=2$\sqrt{2}$(x+y)+xy=2$\sqrt{2}$w+v,
∴w=-$\frac{v}{2\sqrt{2}}$+$\frac{u}{2\sqrt{2}}$,
作图如下,

由$\left\{\begin{array}{l}{2{w}^{2}+{v}^{2}=9}\\{w=-\frac{\sqrt{2}}{4}v+\frac{\sqrt{2}}{4}u}\end{array}\right.$有且只有一个解知,
即5v2-2uv+u2-36=0只有一个解,
故△=4u2-4×5×(u2-36)=0,
从而解得,u=3$\sqrt{5}$或u=-3$\sqrt{5}$;
故u=2$\sqrt{2}$(x+y)+xy的最大值为3$\sqrt{5}$,最小值为-3$\sqrt{5}$.

点评 本题考查了圆锥曲线的应用及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.把函数f(x)的图象向左平移$\frac{π}{6}$个单位,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得图象的解析式是g(x)=sinx,则函数f(x)的解析式为f(x)=sin(2x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.为了得到函数$y=sin(2x-\frac{π}{3})$的图象,只需把函数$y=cos(2x-\frac{π}{6})$的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{3}$个单位长度D.向右平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,已知四边形ABCD的直观图是直角梯形A1B1C1D1,且A1B1=B1C1=2A1D1=4,则四边形ABCD的面积为(  )
A.12B.12$\sqrt{2}$C.24$\sqrt{2}$D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对任意x∈(0,$\frac{π}{2}$),不等式tanx•f(x)<f′(x)恒成立,则下列不等式错误的是(  )
A.f($\frac{π}{3}$)>$\sqrt{2}$f($\frac{π}{4}$)B.f($\frac{π}{3}$)>2cos1•f(1)C.2cos1•f(1)>$\sqrt{2}$f($\frac{π}{4}$)D.$\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=cos2x+2sinxcosx(x∈R),则此函数的值域为[-$\sqrt{2}$,$\sqrt{2}$]周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若点P(m,n)在圆x2+y2=4上,则点M(3m,2n)的轨迹方程是$\frac{(3m)^{2}}{36}+\frac{(2n)^{2}}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知A、B、C、D是空间四个不同的点,求证:AC⊥BD的等价条件是AD2+BC2=CD2+AB2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC的面积为10,P是△ABC所在平面上的一点,满足$\overrightarrow{PA}$+$\overrightarrow{PB}$+2$\overrightarrow{PC}$=3$\overrightarrow{AB}$,则△ABP的面积为5.

查看答案和解析>>

同步练习册答案