精英家教网 > 高中数学 > 题目详情
已知tanα,tanβ是一元二次方程2mx2+(4m-2)x+2m-3=0的两个不等实根,求函数f(m)=5m2+3mtan(α+β)+4的值域.
分析:因为tanα,tanβ是一元二次方程2mx2+(4m-2)x+2m-3=0的两个不等实根,所以利用韦达定理表示出两根之和和两根之积,然后利用两角和的正切函数公式化简tan(α+β),把表示出的tanα+tanβ和tanαtanβ代入即可得到关于m的关系式,把关于m的关系式代入f(m)中,得到f(m)关于m的二次函数,然后再根据一元二次方程有两个不相等的实根,所以得到根的判别式大于0,列出关于m的不等式,求出不等式的解集即可得到m的范围,根据自变量m的范围即可求出f(m)的值域.
解答:解:由已知,有tanα+tanβ=
1-2m
m
tanα•tanβ=
2m-3
2m

tan(α+β)=
2-4m
3

又由△>0,知m∈(-
1
2
,0)∪(0,+∞)

f(m)=5m2+3m•
2-4m
3
+4=(m+1)2+3

∵当m∈(-
1
2
,0)∪(0,+∞)
时f(m)在两个区间上都为单调递增,
故所求值域为(
13
4
,4)∪(4,+∞)
点评:此题考查学生灵活运用两角和的正切函数公式及韦达定理化简求值,会根据自变量的范围求出二次函数相对应的值域范围,掌握二次函数的图象与性质,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα,tanβ是方程x2+3
3
x+4=0的两根,α,β∈(-
π
2
π
2
)则α+β=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题(1)?α∈R,使sinαcosα=1成立;(2)?α∈R,使tan(α+β)=tanα+tanβ成立;(3)?α∈R,都有tan(α+β)=
tanα+tanβ
1-tanαtanβ
成立.其中正确命题的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα、tanβ是方程x2-4x-2=0的两个实根,求:cos2(α+β)+2sin(α+β)cos(α+β)-3sin2(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα,tanβ是方程x2+3
3
x+4=0
的两根,且α,β∈(-
π
2
π
2
)
,则α+β=(  )
A、
π
3
-
3
B、-
π
3
3
C、
π
3
D、-
3

查看答案和解析>>

同步练习册答案