精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的首项a1=2,前n项和为Sn , 等比数列{bn}的首项b1=1,且a2=b3 , S3=6b2 , n∈N*
(1)求数列{an}和{bn}的通项公式;
(2)数列{cn}满足cn=bn+(﹣1)nan , 记数列{cn}的前n项和为Tn , 求Tn

【答案】
(1)解:设等差数列{an}的公差为d,等比数列{bn}的公比为q.

∵a1=2,b1=1,且a2=b3,S3=6b2,n∈N*

∴2+d=q2,3×2+ =6q,

联立解得d=q=2.

∴an=2+2(n﹣1)=2n,bn=2n1


(2)解:cn=bn+(﹣1)nan=2n1+(﹣1)n2n.

∴数列{cn}的前n项和为Tn=1+2+22+…+2n1+[﹣2+4﹣6+8+…+(﹣1)n2n]= +[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].

∴n为偶数时,Tn=2n﹣1+[(﹣2+4)+(﹣6+8)+…+(﹣2n+2+2n)].

=2n﹣1+n.

n为奇数时,Tn=2n﹣1+ ﹣2n.

=2n﹣2﹣n.

∴Tn=


【解析】(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.根据a1=2,b1=1,且a2=b3,S3=6b2,n∈N*

可得2+d=q2,3×2+ =6q,联立解得d,q.即可得出.(2)cn=bn+(﹣1)nan=2n1+(﹣1)n2n.可得数列{cn}的前n项和为Tn=1+2+22+…+2n1+[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].对n分类讨论即可得出.

【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,则该程序运行后输出的S的值为(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两个班学生中分别抽取8名和6名测试他们的数学成绩与英语成绩(单位:分),用表示(m,n).下面是乙班6名学生的测试分数:A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(134,132),当学生的数学、英语成绩满足m≥135,且n≥130时,该学生定为优秀学生.
(1)已知甲班共有80名学生,用上述样本数据估计乙班优秀生的数量;
(2)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名优秀生的概率;
(3)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足: + +…+ = (n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=anan+1 , Sn为数列{bn}的前n项和,对于任意的正整数n,Sn>2λ﹣ 恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1与双曲线C2有相同的左右焦点F1、F2 , P为椭圆C1与双曲线C2在第一象限内的一个公共点,设椭圆C1与双曲线C2的离心率为e1 , e2 , 且 = ,若∠F1PF2= ,则双曲线C2的渐近线方程为(
A.x±y=0
B.x± y=0
C.x± y=0
D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点(a,b)是区域 内的任意一点,则使函数f(x)=ax2﹣2bx+3在区间[ ,+∞)上是增函数的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线xy10被圆(x1)2y23截得的弦长等于(  )

A. B. 2

C. 2 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1Cl中,M,N分别为CC1 , A1B1的中点.
(I)证明:直线MN∥平面CAB1
(II)BA=BC=BB1 , CA=CB1 , CA⊥CB1 , ∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(Ⅰ)讨论函数f(x)= ex的单调性,并证明当x>0时,(x﹣2)ex+x+2>0;
(Ⅱ)证明:当a∈[0,1)时,函数g(x)= (x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.

查看答案和解析>>

同步练习册答案