精英家教网 > 高中数学 > 题目详情

设等差数列an的前n项之和为Sn,已知S10=100,则a4+a7=


  1. A.
    12
  2. B.
    20
  3. C.
    40
  4. D.
    100
B
分析:要求a4+a7就要得到此等差数列的首项和公差,而已知S10=100,由等差数列的前n项和的通项公式可得到首项与公差的关系.代入求出即可.
解答:由等差数列的前n项和的公式得:s10=10a1+d=100,即2a1+9d=20;
而a4+a7=a1+3d+a1+6d=2a1+9d=20
故选B
点评:本题是一道基础计算题,要求学生会利用等差数列的通项公式及前n项和的公式进行化简求值,做题时学生应注意利用整体代换的数学思想解决数学问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an} 的前n项和为Sn,则S12>0是S9≥S3的(  )
A、充分但不必要条件B、必要但不充分条件C、充要条件D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S6>S7>S5,则满足Sn•Sn+1<0的正整数n的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项的和为Sn,且S4=-62,S6=-75,求:
(1){an}的通项公式an
(2)|a1|+|a2|+|a3|+…+|a14|.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若a11-a8=3,S11-S8=3,则使an>0的最小正整数n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a7-1)3+2012(a7-1)=1(a2006-1)3+2012(a2006-1)=-1,则S2012=
2012
2012

查看答案和解析>>

同步练习册答案