精英家教网 > 高中数学 > 题目详情
设A={x|x2+(p+2)x+1=0,x∈R},若A∩R+=∅,求实数p的取值范围.
分析:本题等价于二次方程x2+(p+2)x+1=0无正实根,再分成有根和无根讨论,即可得到实数p的取值范围.
解答:解:由A∩R+=∅,得A=∅,或A≠∅,且x≤0
①当A=∅时,△=(p+2)2-4<0,解得-4<p<0
②当A≠∅时,方程有两个根非正根
△=(p+2)2-4≥0
x1+x2=-(p+2)<0
,解得p≥0
综合①②得p>-4.
点评:考查学生理解交集和空集的意义,灵活运用根的判别式和韦达定理解决实际问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、设A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.
(1)若A∪B=A∩B,求实数a的值;
(2)若A∩B≠∅,且A∩C=∅,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

6、设A={x|x2-ax+6=0},B={x|x2-x+c=0},A∩B=2,则A∪B=
{-1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-2x-3>0},B={x|x2+ax+b≤0},若A∪B=R,A∩B=(3,4],则a+b=
-7
-7

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-2x-3>0},B={x|x2+ax+b≤0},若A∪B=R,A∩B=(3,4],则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.求分别满足下列条件的a的值.
(1)A∩B=A∪B;
(2)A∩B≠φ,且A∩C=φ.

查看答案和解析>>

同步练习册答案