精英家教网 > 高中数学 > 题目详情

【题目】已知奇函数在区间上是增函数,且最大值为10,最小值为4,则在区间的最大值、最小值分别是( )

A. -4,-10 B. 4,-10

C. 10,4 D. 不确定

【答案】A

【解析】奇函数图象关于原点对称,奇函数在区间上是增函数,且最大值为10,最小值为4,在区间的最大值为 ,最小值为.选A.

点精函数的定义域关于原点对称时是函数具有奇偶性的前提,而判断奇偶就是寻求f(-x)f(x)的关系,当时,函数为奇函数,当时,函数为偶函数;奇函数图象关于原点对称,偶函数的图象关于y轴对称,奇函数在关于原点对称的单调区间上单调性相同,偶函数在关于原点对称的单调区间上单调性相反,借助函数的单调性和特殊点特殊值,根据函数的奇偶性可以模拟函数图象,用于比较大小,解不等式,求最值等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x与销售额y(单位:百万元)之间有如下的对应数据:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+

参考公式:用最小二乘法求线性回归方程系数公式 .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.

1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;

2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数, 上的奇函数,且.

(1)求的解析式;

(2)若函数上只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数R上的偶函数,且当x>0时,函数的解析式为= .

(1)判断并证明(0,+∞)上的单调性;

(2):x<0时,函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求与圆心在直线上,且过点A(2,-3),B(-2,-5)的圆C的方程.

(2)是圆C上的点,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12已知椭圆C: 的离心率为,右焦点为(,0).(1)求椭圆C的方程;(2)若过原点作两条互相垂直的射线,与椭圆交于A,B两点,求证:点O到直线AB的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,底面的中点,为棱的中点.

I)证明:平面

II)已知,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届江苏如东高级中学等四校高三12月联考】已知数列满足,且对任意都有

(1)求

(2)设).

求数列的通项公式;

设数列的前项和,是否存在正整数,且,使得成等比数列?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案