精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的函数f(x)满足:f′(x)﹣f(x)=xex , 且f(0)= ,则 的最大值为(
A.0
B.
C.1
D.2

【答案】D
【解析】解:令F(x)= ,则F′(x)= = =x,
则F(x)= x2+c,
∴f(x)=ex x2+c),
∵f(0)=
∴c=
∴f(x)=ex x2+ ),
∴f′(x)=ex x2+ )+xex
=
设y=
则yx2+y=x2+2x+1,
∴(1﹣y)x2+2x+(1﹣y)=0,
当y=1时,x=0,
当y≠1时,要使方程有解,
则△=4﹣4(1﹣y)2≥0,
解得0≤y≤2,
故y的最大值为2,
的最大值为2,
故选:D.
先构造函数,F(x)= ,根据题意求出f(x)的解析式,即可得到 = ,再根据根的判别式即可求出最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中, 为线段的中点为线段上一动点.

(Ⅰ)求证:

(Ⅱ)当时,求三棱锥的体积

(Ⅲ)在线段上是否存在一点,使得平面说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随即编号为1,2…960,分组后在第一组采用简单随机抽样的方法抽到的号码为5,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的32人中,做问卷C的人数为(
A.15
B.10
C.9
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下命题,其中真命题的个数是( )

①若“”是假命题,则“”是真命题;

②命题“若,则”为真命题;

③已知空间任意一点和不共线的三点,若,则四点共面;

④直线与双曲线交于两点,若,则这样的直线有3条;

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次趣味校园运动会的颁奖仪式上,高一、高二、高三代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就座,其中高二代表队有6人.

(1)求n的值;

(2)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率;

(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示中奖,则该代表中奖;若电脑显示谢谢,则不中奖,求该代表中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆C: (a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.
(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;
(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=4x,焦点为F,过点P(﹣1,0)作斜率为k(k>0)的直线l与抛物线C交于A,B两点,直线AF,BF分别交抛物线C于M,N两点,若 + =18,则k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1、F2为双曲线C:x2 =1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2 , 求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应十九大报告提出的实施乡村振兴战略,某村庄投资 万元建起了一座绿色农产品加工厂.经营中,第一年支出 万元,以后每年的支出比上一年增加了 万元,从第一年起每年农场品销售收入为 万元(前 年的纯利润综合=前 年的 总收入-前 年的总支出-投资额 万元).

(1)该厂从第几年开始盈利?

(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.

【答案】(1) 从第 开始盈利(2) 该厂第 年年平均纯利润达到最大,年平均纯利润最大值为 万元

【解析】试题分析(1)根据公式得到,令函数值大于0解得参数范围;(2根据公式得到,由均值不等式得到函数最值.

解析:

由题意可知前 年的纯利润总和

(1)由 ,即 ,解得

知,从第 开始盈利.

(2)年平均纯利润

因为 ,即

所以

当且仅当 ,即 时等号成立.

年平均纯利润最大值为 万元,

故该厂第 年年平均纯利润达到最大,年平均纯利润最大值为 万元.

型】解答
束】
21

【题目】已知数列 的前 项和为 ,并且满足 .

(1)求数列 通项公式;

(2)设 为数列 的前 项和,求证: .

查看答案和解析>>

同步练习册答案