精英家教网 > 高中数学 > 题目详情
20.已知x>0,y>0,且$\frac{1}{x}$+$\frac{2}{y}$=1,则x+4y的最小值是9+2$\sqrt{2}$.

分析 利用基本不等式的性质即可得出.

解答 解:∵x>0,y>0,且$\frac{1}{x}$+$\frac{2}{y}$=1,
∴x+4y=(x+4y)$(\frac{1}{x}+\frac{2}{y})$=9+$\frac{4y}{x}$+$\frac{2x}{y}$≥9+2$\sqrt{\frac{4y}{x}•\frac{2x}{y}}$=9+2$\sqrt{2}$,当且仅当x=$\sqrt{2}$y=2$\sqrt{2}$+1时取等号.
∴x+4y的最小值是9+2$\sqrt{2}$.
故答案为:9+2$\sqrt{2}$.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知A、B分别是椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$的左右两个焦点,O为坐标原点,点P(-1,$\frac{\sqrt{2}}{2}$)在椭圆上,线段PB与y轴的交点M为线段PB的中点.
(1)求椭圆的标准方程;
(2)设C、D是椭圆上的两点,OC⊥OD,求三角形OCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定点F1(-1,0),F2(1,0),动点P满足|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=6,动点P轨迹为曲线C.
(1)求曲线C的方程;
(2)若曲线C与x轴的交点为A1,A2,点M是曲线C上异于点A1,A2的点,直线A1M与A2M的斜率分别为k1,k2,求k1k2的值;
(3)过点Q(2,0)作直线l与曲线C交于A,B两点.在曲线C上是否存在点N,使$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$?若存在,请求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦点为F1,F2,点P为双曲线上一点,且PF2⊥F1F2,∠PF1F2=$\frac{π}{6}$.
(1)求双曲线的离心率;
(2)求双曲线的渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题P:对任意实数x∈R都有(a2-1)x2+(a+1)x+1>0恒成立,命题q:关于x的方程x2-ax+1=0有两个不相等的实根.若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x>$\frac{1}{2}$,则函数f(x)=$\frac{1-2x}{{x}^{2}-2x+\frac{11}{4}}$的最小值是-$\frac{4\sqrt{2}+2}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线l:ax+by-3a=0与双曲线$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}$=1只有一个公共点,则l共有3条,它们的方程是x=3或y=±$\frac{2}{3}$(x-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设Sn为数列{an}的前n项和,且a3-a1=3,$\frac{{S}_{n+1}-1}{{S}_{n}}$=$\frac{{a}_{2}}{{a}_{1}}$=p(p>0,n∈N*
(1)求数列{an}的通项公式;
(2)求数列{an+(-1)nlog2an}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.要得到函数y=3sin(2x+$\frac{π}{3}$)的图象,只需要将函数y=3cos2x的图象(  )
A.向右平行移动$\frac{π}{12}$个单位B.向左平行移动$\frac{π}{12}$个单位
C.向右平行移动$\frac{π}{6}$个单位D.向左平行移动$\frac{π}{6}$个单位

查看答案和解析>>

同步练习册答案