精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

已知,其中向量, (R).

(1) 求的最小正周期和最小值;

(2) 在△ABC中,角A、B、C的对边分别为,若,a=2,求边长的值.

 

【答案】

(1) f(x)的最小正周期为π,最小值为-2.(2) c=2或c=6。

【解析】

试题分析:(1) f(x)=a·b-1=(sin2x,2cosx)·(,cosx)-1

sin2 x +2cos2 x -1=sin2x+cos2x=2sin(2x+)    4分

∴f(x)的最小正周期为π,最小值为-2.       6分

(2) f()=2sin()=

∴sin()=         8分

∴  A= (舍去)      10分

由余弦定理得a2=b2+c2-2bccosA

52=64+c2-8c即c2-8c+12="0"

从而c=2或c=6          12分

考点:本题主要考查平面向量的坐标运算,三角函数和差倍半公式,三角函数性质,余弦定理的应用。

点评:典型题,为研究三角函数的图象和性质,往往需要利用三角函数和差倍半公式将函数“化一”。本题由平面向量的坐标运算得到f(x)的表达式,通过“化一”,利用三角函数性质,求得周期、最小值。(2)则利用余弦定理,得到c的方程,达到解题目的。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案