精英家教网 > 高中数学 > 题目详情

【题目】已知直线y=﹣x+1与椭圆 + =1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为 ,焦距为2,求线段AB的长;
(2)若向量 与向量 互相垂直(其中O为坐标原点),当椭圆的离心率e∈[ ]时,求椭圆的长轴长的最大值.

【答案】
(1)解:∵ ,2c=2,

∴a= ,b=

∴椭圆的方程为

联立 ,消去y得:5x2﹣6x﹣3=0,

设A(x1,y1),B(x2,y2),则

∴|AB|=

=

=


(2)设A(x1,y1),B(x2,y2),

,∴

即x1x2+y1y2=0,

,消去y得(a2+b2)x2﹣2a2x+a2(1﹣b2)=0,

由△=(﹣2a22﹣4a2(a2+b2)(1﹣b2)>0,整理得a2+b2>1

∴y1y2=(﹣x1+1)(﹣x2+1)=x1x2﹣(x1+x2)+1,

∴x1x2+y1y2=0,得:2x1x2﹣(x1+x2)+1=0,

整理得:a2+b2﹣2a2b2=0.

∴b2=a2﹣c2=a2﹣a2e2,代入上式得

2a2=1+ ,∴

,∴

,∴

适合条件a2+b2>1.

由此得 ,∴

故长轴长的最大值为


【解析】(1)由椭圆的离心率为 ,焦距为2,求出椭圆的方程为 .联立 ,消去y得:5x2﹣6x﹣3=0,再由弦长公式能求求出|AB|.(2)设A(x1,y1),B(x2,y2),由 ,知x1x2+y1y2=0,由 ,消去y得(a2+b2)x2﹣2a2x+a2(1﹣b2)=0,再由根的判断式得到a2+b2>1,利用韦达定理,得到a2+b2﹣2a2b2=0.由此能够推导出长轴长的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=xa的图象经过点.

(1)求函数f(x)的解析式,并判断奇偶性;

(2)判断函数f(x)在(﹣,0)上的单调性,并用单调性定义证明.

(3)作出函数f(x)在定义域内的大致图象(不必写出作图过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆Γ: =1(a>b>0)的左右焦点分别为F1 , F2 , 焦距为2c,若直线y= 与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1 , 则该椭圆的离心率等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市出租车的现行计价标准是:路程在2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9 元/km收取,但超过10 km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85(元/km))

(1)将某乘客搭乘一次出租车的费用f(x)(单位:元)表示为行程x(0<x≤60,单位:km)的分段函数;

(2)某乘客的行程为16 km,他准备先乘一辆出租车行驶8 km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?

(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且a1=2,an+1=2Sn+2.
(1)求数列{an}的通项公式;
(2)若数列{bn}的各项均为正数,且bn 的等比中项,求bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】濮阳市黄河滩区某村2010年至2016年人均纯收入(单位:万元)的数据如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代号x

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该村人均纯收入的变化情况,并预测该村2017年人均纯收入.
附:回归直线的斜率和截距的最小乘法估计公式分别为: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的奇偶性;

(2)判断并证明))上的单调性;

(3)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°PA=AC=aPB=PD= ,点EPD的中点.

(Ⅰ)求证:PA⊥平面ABCD

(Ⅱ)求二面角E—AC—D的大小;

(Ⅲ)求点P到平面EAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算:电费每月用电不超过100度时,按每度0.57元计算;每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.

(Ⅰ)设月用电度时,应交电费元,写出关于的函数关系式;

(Ⅱ)小明家第一季度缴纳电费情况如下:

月份

一月

二月

三月

合计

交费金额

76元

63元

45.6元

184.6元

问小明家第一季度共用电多少度?

查看答案和解析>>

同步练习册答案