分析 (1)设等差数列{an}的公差为d,由2a7-a8=6且$a_2^2-{a_3}=1$.可得2(a1+6d)-(a1+7d)=6,$({a}_{1}+d)^{2}-({a}_{1}+2d)$=1,
(2)由a1,a2,a4成等比数列,可得an=n.an•2${\;}^{{a}_{n}}$=n•2n.利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:(1)设等差数列{an}的公差为d,∵2a7-a8=6且$a_2^2-{a_3}=1$.
∴2(a1+6d)-(a1+7d)=6,$({a}_{1}+d)^{2}-({a}_{1}+2d)$=1,
解得:d=1,a1=1,或d=$\frac{29}{16}$,a1=$\frac{49}{16}$.
∴an=n或an=$\frac{49}{16}+\frac{29}{16}(n-1)$=$\frac{29n+20}{16}$.
(2)∵a1,a2,a4成等比数列,∴an=n.
∴an•2${\;}^{{a}_{n}}$=n•2n.
数列{an•2${\;}^{{a}_{n}}$}的前n项和Sn=2+2×22+3×23+…+n•2n,
2Sn=22+2×23+…+(n-1)•2n+n•2n+1,
∴-Sn=2+22+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1=(1-n)•2n+1-2,
∴Sn=(n-1)•2n+1+2.
点评 本题考查了等差数列与等比数列的通项公式与求和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{19}{2}$ | B. | $\frac{21}{2}$ | C. | $\frac{21}{55}$ | D. | $\frac{23}{66}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com