精英家教网 > 高中数学 > 题目详情
1.如图,平面ABE⊥平面ABCD,四边形ABCD为直角梯形,∠CBA=90°,AD∥BC∥EF,△ABE为等边三角形,AB=2$\sqrt{3}$,BC=2,AD=4,EF=3
(Ⅰ)求证:平面CDF⊥平面ABCD;
(Ⅱ)求直线AF与平面CDF所成角的正切值.

分析 (Ⅰ)取AB,CD的中点H,G,连接GH,GF,EH,证明:四边形EFGH是平行四边形,FG∥EH,EH⊥平面ABCD,可得FG⊥平面ABCD,即可证明平面CDF⊥平面ABCD;
(Ⅱ)连接AG,证明∠AFG为直线AF与平面CDF所成角,即可求直线AF与平面CDF所成角的正切值.

解答 (Ⅰ)证明:如图所示,取AB,CD的中点H,G,连接GH,GF,EH,则HG∥AD∥BC∥EF,
∵BC=2,AD=4,∴HG=3,
∵EF=3,∴EF=HG,
∴四边形EFGH是平行四边形,∴FG∥EH
∵△ABE为等边三角形,∴EH⊥AB,
∵平面ABE⊥平面ABCD,平面ABE∩平面ABCD=AB,
∴EH⊥平面ABCD,
∴FG⊥平面ABCD,
∵FG?平面CDF,
∴平面CDF⊥平面ABCD;
(Ⅱ)解:连接AG,由题意,可得CD=4,∠ADC=60°,∵AD=4,∴AG=2$\sqrt{3}$,
∴AG⊥GD,
∵平面CDF⊥平面ABCD,平面CDF∩平面ABCD=CD
∴AG⊥平面CDF,∴∠AFG为直线AF与平面CDF所成角,
∵AG=2$\sqrt{3}$,FG=3,
∴tan∠AFG=$\frac{2\sqrt{3}}{3}$,即直线AF与平面CDF所成角的正切值为$\frac{2\sqrt{3}}{3}$.

点评 本题考查平面与平面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知a=20.3,b=20.1,c=0.21.3,则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ln(x+1)+$\frac{ax}{x+1}$(a∈R)
(1)当a=1时,求f(x)在x=0处的切线方程;
(2)当a<0时,求f(x)的极值;
(3)求证:ln(n+1)>$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{2}}$+…+$\frac{n-1}{{n}^{2}}$(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示的三棱台中,AA1⊥平面ABC,AB⊥BC,AA1=1,AB=2,BC=4,∠ABB1=45°.
(1)证明:AB1⊥平面BCC1B1
(2)若点D为CC1中点,求二面角A-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=ex-x2+b,曲线y=f(x)与直线y=ax+1相切于点(1,f(1))
(1)求a,b的值;
(2)求证:当x>0时,ex+(2-e)x-1≥x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设f(x)=$\frac{{3}^{x}}{{3}^{x}+1}$-$\frac{1}{3}$,若规定<x>表示不小于x的最小整数,则函数y=<f(x)>的值域是(  )
A.{0,1}B.{0,-1}C.{-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=2x2-kx+1在区间[1,3]上是单调函数,则实数k的取值范围为(-∞,4]∪[12,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一圆锥的母线长为20,母线与轴的夹角为30°,则圆锥的表面积为300π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=\left\{{\begin{array}{l}{a•sin(\frac{πx}{2}+\frac{π}{6})}\\{{2^{-x}}}\end{array}}\right.\begin{array}{l}{(x≥0)}\\{(x<0)}\end{array}$,若f[f(-1)]=1,则a的值是(  )
A.2B.-2C.$\frac{{2\sqrt{3}}}{3}$D.$-\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案