精英家教网 > 高中数学 > 题目详情
5.当x→0+时,无穷小量f(x)=${∫}_{0}^{{X}^{2}}$sintdt是无穷小量x3的(  )
A.高阶无穷小量B.低阶无穷小量
C.同阶但非等价无穷小量D.等价无穷小量

分析 利用高阶无穷小的定义转化成极限为0,利用罗比塔法则求出要求的极限.

解答 解:f(x)=${∫}_{0}^{{X}^{2}}$sintdt=-cost|${\;}_{0}^{{x}^{2}}$=1-cosx2
构造极限$\underset{lim}{x→{0}^{+}}$$\frac{f(x)}{{x}^{3}}$=$\underset{lim}{x→{0}^{+}}$$\frac{1-cos{x}^{2}}{{x}^{3}}$,
该极限是一个“$\frac{0}{0}$”型极限,运用洛必达法则求解,
∴$\underset{lim}{x→{0}^{+}}$$\frac{1-cos{x}^{2}}{{x}^{3}}$=$\underset{lim}{x→{0}^{+}}$$\frac{-4xcos{x}^{2}}{3}$=0,
故选:A.

点评 本题考查了高阶无穷小的定义及函数极限的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在△ABC中,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,且$\sqrt{3}$(tanA+tanB)=tanAtanB-1,求△ABC的三内角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果x2+ky2=3表示焦点在y轴上的椭圆,那么实数k的取值范围是(  )
A.(0,+∞)B.(-∞,1)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平行六面体OABC-O′A′B′C′,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,$\overrightarrow{OO′}$=$\overrightarrow{b}$,D是四边形0ABC的中心,则(  )
A.$\overrightarrow{O′D}$=-$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$B.$\overrightarrow{O′D}$=-$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$C.$\overrightarrow{O′D}$=$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$D.$\overrightarrow{O′D}$=$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线的倾斜角α=30°,且直线过点M(2,1),则此直线的方程为$\sqrt{3}x-3y+3-2\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=$\frac{tan(x-\frac{π}{4})•\sqrt{sinx}}{lg(2cosx-1)}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知动点P到点(2,0)的距离比到直线x=-3的距离小1,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=|ax-2|+lnx-$\frac{1}{x}$,(a≥2)在(0,1]上没有零点.则实数a的取值范围是[2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的通项公式an=3n-2,求a1及{an}前7项的和S7

查看答案和解析>>

同步练习册答案