精英家教网 > 高中数学 > 题目详情

【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1点E,F,G分别是DD1 , AB,CC1的中点,则异面直线A1E与GF所成的角是(
A.90°
B.60°
C.45°
D.30°

【答案】A
【解析】解:由题意:ABCD﹣A1B1C1D1是长方体,E,F,G分别是DD1,AB,CC1的中点,连接B1G,

∵A1E∥B1G,

∴∠FGB1为异面直线A1E与GF所成的角.

连接FB1

在三角形FB1G中,AA1=AB=2,AD=1,

B1F= =

B1G= =

FG= =

B1F2=B1G2+FG2

∴∠FGB1=90°,

即异面直线A1E与GF所成的角为90°.

故选A.

【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+3)﹣1(a>0且a≠1)的图象恒过定点A,若点A在mx+ny+2=0上,其中mn>0,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx.
(1)设h(x)为偶函数,当x<0时,h(x)=f(﹣x)+2x,求曲线y=h(x)在点(1,﹣2)处的切线方程;
(2)设g(x)=f(x)﹣mx,求函数g(x)的极值;
(3)若存在x0>1,当x∈(1,x0)时,恒有f(x)> 成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x2+2x﹣3>0;命题q: >1,若“(¬q)∧p”为真,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数时取得最小值,且函数的图象在轴上截得的线段长为

(1)求函数的解析式;(2)当时,函数的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查大学生这个微信用户群体中每人拥有微信群的数量,现从武汉市大学生中随机抽取100位同学进行了抽样调查,结果如下:

微信群数量

频数

频率

0至5个

0

0

6至10个

30

0.3

11至15个

30

0.3

16至20个

a

c

20个以上

5

b

合计

100

1

(Ⅰ)求a,b,c的值;
(Ⅱ)以这100个人的样本数据估计武汉市的总体数据且以频率估计概率,若从全市大学生(数量很大)中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于四面体有以下命题:

1)若则过向底面作垂线,垂足为底面的外心;

2)若 则过向底面作垂线,垂足为底面的内心;

3)四面体的四个面中,最多有四个直角三角形;

4若四面体6条棱长都为1,则它的内切球的表面积为.

其中正确的命题是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x),x∈R.

(1)求函数f(x)的最小正周期和单调递减区间;

(2)求函数f(x)在区间[- ]上的最小值和最大值,并求出取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标是ρ=2asinθ,直线l的参数方程是 (t为参数).
(1)若a=2,M为直线l与x轴的交点,N是圆C上一动点,求|MN|的最大值;
(2)若直线l被圆C截得的弦长为 ,求a的值.

查看答案和解析>>

同步练习册答案