精英家教网 > 高中数学 > 题目详情

【题目】已知AB为椭圆)和双曲线的公共顶点,PQ分别为双曲线和椭圆上不同于AB的动点,且),设APBPAQBQ的斜率分别为.

1)若,求的值(用ab的代数式表示);

2)求证:

3)设分别为椭圆和双曲线的右焦点,若,求的值.

【答案】1;(2)证明见解析;(38

【解析】

1)根据平面向量的线性运算可得,设点,将两点分别代入双曲线方程和椭圆方程并求解可得,从而可求

2)设点PQ的坐标分别为,将点P的坐标代入双曲线方程变形可得,则,同理可得,相加即可证明结论;

3)由(2,又,则,从而,解得,因为OPQ三点共线且,所以,则,可求,结合①可得,再求,同理可求,由此即可求得结果.

1)如图,

,则,设点

将两点分别代入双曲线方程和椭圆方程中得:

解得,,故

2)设点PQ的坐标分别为

,即

所以,①,

同理,②,由(1)知,OPQ三点共线,

,由①②得,

3)由(2),,又,则

,从而,又

解得

因为OPQ三点共线且,所以

,所以

由①得,同理

另一方面,,类似地,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某数学小组到进行社会实践调查,了解鑫鑫桶装水经营部在为如何定价发愁。进一步调研了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表:

销售单价/元

6

7

8

9

10

11

12

日均销售量/桶

480

440

400

360

320

280

240

根据以上信息,你认为该经营部定价为多少才能获得最大利润?( )

A.每桶8.5B.每桶9.5C.每桶10.5D.每桶11.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称礼让斑马线,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.

1)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不礼让斑马线行为与驾龄的关系,得到如下列联表:能否据此判断有97.5%的把握认为礼让斑马线行为与驾龄有关?

不礼让斑马线

礼让斑马线

合计

驾龄不超过1

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

2)下图是某市一主干路口监控设备所抓拍的5个月内驾驶员不礼让斑马线行为的折线图:

请结合图形和所给数据求违章驾驶员人数y与月份x之间的回归直线方程,并预测该路口7月份的不礼让斑马线违章驾驶员人数.

附注:参考数据:

参考公式:(其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)若函数在区间上存在极值,求实数的取值范围;

(Ⅲ)设,对任意恒有,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个粒子从原点出发,在第一象限和两坐标轴正半轴上运动,在第一秒时它从原点运动到点,接着它按图所示在轴、轴的垂直方向上来回运动,且每秒移动一个单位长度,那么,在2018秒时,这个粒子所处的位置在点______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为为椭圆上一动点(异于左右顶点),面积的最大值为

(1)求椭圆的方程;

(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系下,方程的图形为如图所示的“幸运四叶草”,又称为玫瑰线.

(1)当玫瑰线的时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;

(2)求曲线上的点M与玫瑰线上的点N距离的最小值及取得最小值时的点MN的极坐标(不必写详细解题过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,分别为的中点.

(1)证明:平面

(2)已知与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,且是函数的一个极值,求函数的最小值;

(Ⅱ)若,求证:.

查看答案和解析>>

同步练习册答案