精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1+x
1-x
,若f(sinα)+f(-sinα)=
5
2
,且α∈(-
π
2
,0),求sinα的值.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:先求出f(sinα),f(-sinα),从而由已知可求得cosα的值,即可求出sinα的值.
解答: 解:∵α∈(-
π
2
,0),∴sinα<0,cosα>0,
∵f(x)=
1+x
1-x

∴f(sinα)=
1+sinα
1-sinα
=
(1+sinα)2
cos2α
=
1+sinα
cosα

f(-sinα)=
1-sinα
1+sinα
=
1-sinα
cosα

1+sinα
cosα
+
1-sinα
cosα
=
5
2
,从而解得cosα=
4
5

∴sinα=-
1-cos2α
=-
3
5
点评:本题主要考察了同角三角函数基本关系的运用,注意三角函数值符号的选择,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查得到了如表的列联表:
喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计302050
(1)用分层抽样的方法在喜欢打篮球的学生中抽6人,其中应抽取女生多少人?
(2)根据以上列联表,问:有多大把握认为是否喜欢打篮球与性别有关.
附:k2=
n(ad-bc)2
(a+b)(c+d)(+c)(b+d)

临界值表:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2+Dx+Ey+F=0与圆x2+y2=2关于直线y=x+2对称,则D-E=(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.过B1作直线l交椭圆于P、Q两点.
(1)求该椭圆的标准方程;
(2)若PB2⊥QB2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:ax+y+2=0的倾斜角小于60°,q:关于x的方程2x2-3y+a=0有两个同号的不等实数根,若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
(1)“若a>b,则ac2>bc2”的否命题;
(2)“若xy=0,则|x|+|y|=0”的逆否命题;
(3)在△ABC中,“A>30°”是“sinA>
1
2
”的充分不必要条件;
(4)“数列{an}的前n项和是Sn=An2+Bn”是“数列{an}是等差数列”的充要条件.
其中真命题的序号是
 
(真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3sinx-3
3
cosx的最大值是(  )
A、3+3
3
B、4
3
C、6
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-
1
4

(1)求f(x)在[-4,4]上的最大值和最小值;
(2)当m+n≠0时,求证:
f(m)+f(n)
m+n
<f(0).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)经过圆c:x2+2x+y2-
2
y+
1
2
=0的圆心c,离心率e=
2
2
,求椭圆G的方程.

查看答案和解析>>

同步练习册答案