精英家教网 > 高中数学 > 题目详情

在斜三棱柱中,侧面平面中点.

(1)求证:
(2)求证:平面
(3)若,求三棱锥的体积.

(1)参考解析;(2)参考解析;(3)

解析试题分析:(1)要证明线面垂直,根据线面垂直的判断定理,需要证明直线垂直平面内的两条相交直线,或者用面面垂直的性质定理,转化为线面垂直在转到线线垂直的结论,本小题是根据题意,利用第二种方法证明.
(2)线面平面平行的证明,关键是在平面内找到一条直线与要证明的直线平行,根据D点是中点,利用中位线的知识可得到直线的平行,所以把直线交点与点D连结即可.线面平行还有一种就是转化为面面平行.线面平行的证明就是这两种判断的相互转化.
(3)根据体积公式,以及题意很容易确定高以及底面的面积,即可求出体积.
试题解析:(1)证明:因为 ,
所以
又 侧面平面
且 平面平面
平面
所以 平面
又  平面
所以  .
(2)证明:设的交点为,连接,
中,分别为的中点,

所以
平面平面
所以 平面 .
(3)解:由(1)知,平面
所以三棱锥的体积为.

所以 , 所以 .
三棱锥的体积等于.
考点:1.线线垂直的判断.2.线面垂直的判定.3.线面平行的判断.4.棱锥的体积公式.5.空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角PACB的大小为60°.过P作PH⊥EF于H.

(1)求证:PH⊥平面ABC;
(2)若a+b=2,求四面体PABC体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点FAB的中点.

图1                      图2
(1)求证:DE⊥平面BCD
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B­DEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆柱体的一条母线,过底面圆的圆心是圆上不与点重合的任意一点,已知棱

(1)求证:
(2)将四面体绕母线转动一周,求的三边在旋转过程中所围成的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥P­ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCDEF分别为棱BCAD的中点.
 
(1)求证:DE∥平面PFB
(2)已知二面角P­BF­C的余弦值为,求四棱锥P­ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三角形中,是边长为的正方形,平面⊥底面,若分别是的中点.

(1)求证:∥底面
(2)求证:⊥平面
(3)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,上的高,沿折起,使.

(1)证明:平面平面
(2)设,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱锥的底面边长为,侧棱长为为棱的中点.

(1)求异面直线所成角的大小(结果用反三角函数值表示);
(2)求该三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC.

(1)求证:AC⊥BB1
(2)若P是棱B1C1的中点,求平面PAB将三棱柱分成的两部分体积之比.

查看答案和解析>>

同步练习册答案