精英家教网 > 高中数学 > 题目详情
4.已知等差数列{an}中a1=19,a4=13,Sn为{an}的前n项和.
(Ⅰ)求通项an及Sn
(Ⅱ)令cn=bn-an,且数列{cn}是前三项为x,3x+3,6x+6的等比数列,求bn

分析 (Ⅰ)利用等差数列通项公式求出首项和公差,由此能求出通项an及Sn
(Ⅱ)由数列{cn}是前三项为x,3x+3,6x+6的等比数列,求出x=-3,从而得到等比数列{cn}中cn=(-3)•2n-1.由此能求出bn

解答 解:(Ⅰ)∵等差数列{an}中a1=19,a4=13,Sn为{an}的前n项和,
∴a4=19+3d=13,解得d=-2,
∴an=19+(n-1)×(-2)=21-2n.
${S}_{n}=19n+\frac{n(n-1)}{2}×(-2)$=20n-n2
(Ⅱ)∵数列{cn}是前三项为x,3x+3,6x+6的等比数列,
∴(3x+3)2=x(6x+6),
解得x=-1(舍)或x=-3,
∴等比数列{cn}前3项为-3,-6,-12,
∴cn=(-3)•2n-1
∵cn=bn-an
∴bn=cn+an=(-3)•2n-1+21-2n.

点评 本题考查数列的通项公式及前n项和公式的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.命题“?x∈R,x2≠-1”的否定是(  )
A.?x∉R,x2=-1B.?x∈R,x2=-1C.?x∉R,x2=-1D.?x∈R,x2=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知F1、F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P,且∠PF1F2=30°.求:
(1)双曲线的离心率;
(2)双曲线的渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.命题p:log2(6x+12)≥log2(x2+3x+2);命题q:4ax+a<${2^{{x^2}-2x-3}}$;
(Ⅰ)若p为真命题,求x的取值范围;
(Ⅱ)若p为真命题是q为真命题的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.甲、乙两个小组,甲组有2个男生,2个女生,乙组有2个男生,3个女生,现从两组中各抽取2人,4个人中恰有1个女生的不同抽取数为10.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合S={0,1,2},P={2},那么S∪P=(  )
A.{0,1,2,2}B.{0,1,2}C.{0}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,$\overrightarrow{BC}•\overrightarrow{AC}-\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AC}{|^2}$,则△ABC的形状一定是(  )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,已知点P(1,-2),直线l:$\left\{\begin{array}{l}x=1+m\\ y=-2+m\end{array}$(m为参数),以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系;曲线C的极坐标方程为ρsin2θ=2cosθ;直线l与曲线C的交点为A,B.
(1)求直线l和曲线C的普通方程;
(2)求$\frac{1}{{|{PA}|}}$+$\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在空间直角坐标系O-xyz中,点(1,2,1)关于平面yOz对称点的坐标为(  )
A.(-1,-2,1)B.(-1,2,1)C.(1,-2,-1)D.(1,2,-1)

查看答案和解析>>

同步练习册答案