精英家教网 > 高中数学 > 题目详情
19.一个几何体的三视图如图所示,则这个几何体的直观图为(  )
A.B.C.D.

分析 由已知的三视图可得:该几何体是一个以俯视图为底面的四棱锥,而且有一侧棱垂直与底面,结合俯视图,可得结论.

解答 解:由已知的三视图可得:该几何体是一个以俯视图为底面的四棱锥,而且有一侧棱垂直与底面,结合俯视图,可知B满足,
故选B.

点评 本题考查三视图与直观图的转化,考查数形结合的数学思想,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ln(x-1)+ax2+x+1,g(x)=(x-1)ex+ax2,a∈R.
(Ⅰ)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若函数g(x)有两个零点,试求a的取值范围;
(Ⅲ)证明f(x)≤g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平行四边形ABCD中,已知AB=2,AD=l,∠BAD=60°,若E,F分别是BC,CD的中点,则$\overrightarrow{BF}•\overrightarrow{DE}$=(  )
A.2B.-2C.$\frac{5}{4}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x,y满足$\left\{\begin{array}{l}y≥0,\;\;\;\\ 2x-y≥0,\;\;\;\\ x+y-3≤0\end{array}\right.$则2x+y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知Ω是集合{(x,y)|0≤x≤6,0≤y≤4}所表示图形边界上的整点(横、纵坐标都是整数的点)的集合,集合D={(6,0),(-6,0),(0,4),(0,-4),(4,-4),(-4,4),(2,-2),(-2,2)}.规定:
(1)对于任意的a=(x1,y1)∈Ω,b=(x2,y2)∈D,a+b=(x1,y1)+(x2,y2)=(x1+x2,y1+y2
(2)对于任意的k∈N*,序列ak,bk满足:
①ak∈Ω,bk∈D
②a1=(0,0),ak=ak-1+bk-1,k≥2,k∈N*
(Ⅰ) 求a2
(Ⅱ) 证明:?k∈N*,ak≠(5,0)
(Ⅲ) 若ak=(6,2),写出满足条件的k的最小值及相应的a1,a2,…,ak

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.${e^{-2}},{2^{\frac{1}{e}}},ln2$三个数中最大的数是${2^{\frac{1}{e}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,且经过点P(0,$\sqrt{5}$),离心率为$\frac{2}{3}$,过点F1的直线l与直线x=4交于点A
(I)  求椭圆C的方程;
(II) 当线段F1A的垂直平分线经过点F2时,求直线l的方程;
(III)点B在椭圆C上,当OA⊥OB,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$M:\frac{x^2}{a^2}+{y^2}=1({a>1})$右顶点、上顶点分别为A、B,且圆O:x2+y2=1的圆心到直线AB的距离为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆M的方程;
(2)若直线l与圆O相切,且与椭圆M相交于P,Q两点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,a2=3,a3+a6=11
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+$\frac{1}{{2}^{{a}_{n}}}$,其中n∈N*,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案