精英家教网 > 高中数学 > 题目详情
)在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:
k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)],
由此得1×2=(1×2×3-0×1×2),
2×3=(2×3×4-1×2×3),…,
n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)].
相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2).
类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为    .
n(n+1)(n+2)(n+3)
k(k+1)(k+2)=[k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)],
∴1×2×3+2×3×4+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

观察下列各式:_____________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察下列等式:
+2=4;×2=4;+3=×3=+4=×4=;…,根据这些等式反映的结果,可以得出一个关于自然数n的等式,这个等式可以表示为______________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若ab∈R,则ab=0⇒ab”类比推出“若ab∈C,则ab=0⇒ab”;
②“若abcd∈R,则复数abi=cdi⇒acbd”类比推出“若abcd∈Q,则abcdacbd”;
③“若ab∈R,则ab>0⇒a>b”类比推出“若ab∈C,则ab>0⇒a>b”.
其中类比得到的结论正确的个数是 (  ).
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011
的末四位数字为  (  ).
A.3 125B.5 625
C.0 625D.8 125

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线;已知直线b∥平面α,直线a?平面α,则直线b∥直线a”,结论显然是错误的,这是因为(  )
A.大前提错误B.小前提错误
C.推理形式错误D.非以上错误

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义平面向量之间的一种运算“☉”如下:对任意的a=(m,n),b=(p,q),令a☉b=mq-np.下面说法错误的是(  )
A.若a与b共线,则a☉b=0
B.a☉b=b☉a
C.对任意的λ∈R,有(λa)☉b=λ(a☉b)
D.(a☉b)2+(a·b)2=|a|2|b|2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若集合A1,A2,…,An满足A1∪A2∪…∪An=A,则称A1,A2,…,An为集合A的一种拆分.已知:
①当A1∪A2={a1,a2,a3}时,有33种拆分;
②当A1∪A2∪A3={a1,a2,a3,a4}时,有74种拆分;
③当A1∪A2∪A3∪A4={a1,a2,a3,a4,a5}时,有155种拆分;
……
由以上结论,推测出一般结论:
当A1∪A2∪…∪An={a1,a2,a3,…,an+1}时,有    种拆分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

挪威数学家阿贝尔曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式——阿贝尔公式:

a1b1+a2b2+a3b3+…+anbn=L1(b1-b2)+L2(b2-b3)+L3(b3-b4)+…+Ln-1(bn-1-bn)+Lnbn,其中L1=a1,则
(Ⅰ)L3           
(Ⅱ)Ln                 

查看答案和解析>>

同步练习册答案