精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.
(1)求证:CA=CD;
(2)求⊙O的半径.
分析:(1)可通过证明角相等来证边相等.连接OC,则OC⊥CD,那么∠ACO=30°;根据等边对等角我们不难得出∠A=30°,∠COD=60°,直角三角形OCD中,∠COD=60°,因此∠A=∠D=30°,由此便可得出CA=CD.
(2)在直角三角形OCD中,可用半径表示出OC,OD,有∠D的度数,可用正弦函数求出半径的长.
解答:解:
(1)连接OC.
精英家教网∵DC切⊙O于点C,
∴∠OCD=90°.
又∵∠ACD=120°,
∴∠ACO=∠ACD-∠OCD=120°-90°=30°.
∵OC=OA,
∴∠A=∠ACO=30°,
∴∠COD=60°.
∴∠D=30°,
∴CA=DC.
(2)∵sin∠D=
OC
OD
=
OC
OB+BD
=
OB
OB+BD

sin∠D=sin30°=
1
2

OB
OB+10
=
1
2

解得OB=10.
即⊙O的半径为10.
点评:本题主要考查了解直角三角形的应用和切线的性质.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选做题
如图,已知AB是⊙O的直径,AC是弦,AD⊥CE,垂足为D,AC平分∠BAD.
(Ⅰ)求证:直线CE是⊙O的切线;(Ⅱ)求证:AC2=AB•AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,则PC的长是(  )
A、3
B、2
2
C、2
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是⊙O的直径,点C是⊙O上的动点(异于A、B),过动点C的直线VC垂直于⊙O所在的平面,D,E分别是VA,VC的中点.
(1)求证:直线ED⊥平面VBC;
(2)若VC=AB=2BC,求直线EO与平面VBC所成角大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(Ⅰ)求证:AD⊥CD;
(Ⅱ)若AD=2,AC=
5
,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,OA=2.
(1)求证:DC是⊙O的切线;
(2)求AD•OC的值;
(3)若AD+OC=9,求CD的长.

查看答案和解析>>

同步练习册答案