精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.

(1)
(2)的单调递增区间为,单调递减区间为
(3)

解析试题分析:函数的定义域为,   1分
.    2分
(Ⅰ)当时,函数
所以曲线在点处的切线方程为
.                  4分
(Ⅱ)函数的定义域为.   
(i)当时,上恒成立,
上恒成立,此时上单调递减. 5分
(2)当时,
(ⅰ)若
,即,得;   6分
,即,得.        7分
所以函数的单调递增区间为
单调递减区间为. 8分
(ⅱ)若上恒成立,则上恒成立,此时 在上单调递增.          9分
(Ⅲ))因为存在一个使得
,等价于.  10分
,等价于“当 时,”. 
求导,得.  11分
因为当时,,所以上单调递增.   12分
所以,因此.      13分
考点:导数的运用
点评:主要是考查了导数在研究函数中的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,,其中R.
(1)讨论的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若函数图象上任意一点关于原点的对称点的轨迹恰好是函数的图象.
(1)写出函数的解析式;
(2)当时总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数为有理数且),求函数的最小值;
(2)①试用(1)的结果证明命题:设为有理数且,若时,则
②请将命题推广到一般形式,并证明你的结论;
注:当为正有理数时,有求导公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设对于任意实数x,不等式|x+7|+|x-1|≥m恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式|x-3|-2x≤2m-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,证明:
(Ⅰ)对每个,存在唯一的,满足
(Ⅱ)对任意,由(Ⅰ)中构成的数列满足.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程为,且对任意的恒成立.
(Ⅰ)求函数的解析式;
(Ⅱ)求实数的最小值;
(Ⅲ)求证:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.设关于x的不等式的解集为且方程的两实根为.
(1)若,求的关系式;
(2)若,求的范围。

查看答案和解析>>

同步练习册答案